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Abstract Automated, reliable cloud masks over snow‐covered terrain would improve the retrieval of
snow properties from multispectral satellite sensors. The U.S. Geological Survey and NASA chose the
currently operational cloud masks based on global performance across diverse land cover types. This study
assesses errors in these cloud masks over snow‐covered, midlatitude mountains. We use 26 Landsat 8 scenes
with manually delineated cloud, snow, and land cover to assess the performance of two cloud masks:
CFMask for the Landsat 8 OLI and the cloud mask that ships with Moderate‐Resolution Imaging
Spectroradiometer (MODIS) surface reflectance products MOD09GA and MYD09GA. The overall precision
and recall of CFMask over snow‐covered terrain are 0.70 and 0.86; the MOD09GA cloud mask precision and
recall are 0.17 and 0.72. A plausible reason for poorer performance of cloud masks over snow lies in the
potential similarity between multispectral signatures of snow and cloud pixels in three situations: (1) Snow
at high elevation is bright enough in the “cirrus” bands (Landsat band 9 or MODIS band 26) to be classified
as cirrus. (2) Reflectances of “dark” clouds in shortwave infrared (SWIR) bands are bracketed by snow
spectra in those wavelengths. (3) Snow as part of a fractional mixture in a pixel with soils sometimes
produces “bright SWIR” pixels that look like clouds. Improvement in snow‐cloud discrimination in these
cases will require more information than just the spectrum of the sensor's bands or will require deployment
of a spaceborne imaging spectrometer, which could discriminate between snow and cloud under conditions
where a multispectral sensor might not.

Plain Language Summary Both snow and clouds are brighter in the visible spectrum and colder
in the thermal infrared than other parts of the landscape, so discriminating between them in passive
optical satellite images poses a long‐standing problem in remote sensing of Earth. The operational cloud
masks now provided for satellite imagery were chosen because they identify clouds correctly over most land
covers. Over snow‐covered terrain in the mountains, however, errors in identification persist. This study
evaluates those errors and identifies reasons why some snow and clouds appear very similar in our
workhorse satellite sensors, specifically Landsat and Moderate Resolution Imaging Spectroradiometer: (1)
At high elevations, snow can look like cirrus clouds in the specific spectral regions employed to detect cirrus.
(2) Snow is usually dark in spectral bands where most clouds are bright, but thin clouds can appear similarly
dark in those same bands. (3) Image pixels containing both snow and soil can appear bright in the same
spectral regions where clouds are bright. Fixing these cases of misidentification will require analyses that use
more information than just the spectrum of the sensor's bands or will require deployment of an imaging
spectrometer in space.

1. Introduction

Mapping snow cover and albedo from space is our most convenient and consistent way to observe processes
that occur in the world's mountain ranges. The expanse of the mountain environment and unsettled nature
of mountain weather encumber in situ and airborne data collection. Even though satellites view the
mountains safely removed from these difficulties, clouds obscure parts of Earth's surface from the view of
sensors in solar and infrared spectra. Knowing which pixels are snow‐covered in cloudy scenes is necessary
to map the daily, weekly, and monthly changes in spatial extent, grain size, and prevalence of
light‐absorbing particles of the snowpack (Dozier & Painter, 2004; Zhang et al., 2019). Accurate snow cover
and albedo from remote sensing data are needed for estimating rates of snowmelt runoff (Painter et al.,
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2018), reconstructing the snow water equivalent (Bair et al., 2016), or understanding interannual variability
and trends (Skiles et al., 2012). A serious, yet tractable, challenge to the consistent delivery of timely high‐
quality information about mountain snow from spaceborne multispectral sensors is the identification of
clouds in images of snow‐covered terrain. This study examines the accuracy of Landsat 8 and Moderate‐
Resolution Imaging Spectroradiometer (MODIS) cloud masks over midlatitude snow‐covered mountains
and highlights the difficulties for cloud masking in mountain hydrology.

Many clouds are easily identified from their visible and infrared spectra. Clouds are brighter and colder than
most land surfaces except snow and ice, so for many users of remote sensing data, existing cloud masks can
be trusted to identify clouds (Foga et al., 2017; Zhu et al., 2015). Since clouds tend to move, and sensors pass
over the same location repeatedly, users can analyze the land surface without significant errors from cloudy
pixels by using clear‐sky pixels from the clouds' neighborhood from a single scene or amalgamate clear‐sky
pixels from multiple overpasses.

Most clouds are spectrally distinct from snow. The smaller sizes of the scattering droplets or ice crystals in
clouds, compared to sizes of snow grains, cause the main differences between the spectral reflectance of
snow and clouds (Dozier, 1989), with snow density having little effect on the snow's spectral reflectance
(Bohren & Beschta, 1979; Warren, 1982). In the visible spectral region where ice and water are transparent,
clouds and snow are both bright. In the shortwave‐infrared region, ice and water are moderately absorptive,
so the smaller scattering elements in clouds, whether water droplets or ice crystals, usually make them
brighter than snow (Warren, 2019).

Clouds frequently obstruct mountainous surfaces, and consistent cloud cover can block clear‐sky acquisi-
tions of some areas for long periods depending on a satellite's orbit. Despite distinct radiative properties of
clouds and snow, accurate, dependable cloud masks do not yet exist for use in large‐scale scientific data ana-
lysis of Earth's snow‐ and ice‐covered regions where clouds often persist. Both snow and clouds are bright,
white, cold objects composed of water in either the frozen or the liquid state, and these similarities can make
discrimination between snow and cloud from spaceborne multispectral sensors difficult. Persistently mis-
classified snow as cloud or cloud as snow affect models of snow accumulation and melt that rely on accurate
snow‐covered area and albedo and local radiative conditions for energy balance modeling (Bair et al., 2016).
Cloud masking algorithms perform the worst in snow‐covered mountain ranges where some clouds are
identified as snow and some snow is identified as cloud (Hall & Riggs, 2007; Irish et al., 2006; Zhu &
Woodcock, 2012).

Few analyses explicitly test these cloud masking algorithms for their performance over snow‐covered ter-
rain, especially in mountains. For example, the snow and ice regions chosen to validate the Landsat 8
Cloud Cover Assessment (U.S. Geological Survey, 2016) exclude midlatitude mountainous regions and
instead focus on the polar regions where validation imagery consists mostly of snow and ice with little varia-
bility in topography. Therefore, snowy mountainous regions are undersampled and binned into disparate
categories when global cloud analyses create a validation data set that covers the entire globe (Foga et al.,
2017; Hughes & Hayes, 2014). Mountains cover about a quarter of Earth's land surface, provide seasonal
water supply for nearly two billion people, and include important ecosystems (Mankin et al., 2015; Wester
et al., 2019). In North America, for example, mountains cover 24% of the area but contain ~60% of the snow
(Wrzesien et al., 2018). Assessing remote sensing tools based on their global performance undervalues the
importance of these mountainous regions to environmental management. Thus, the importance of moun-
tains in supplying water and the spatiotemporal variability of seasonal snow heightens the need for better
cloud masks. Since images of mountainous regions are often just partly cloudy during the snow season,
usually some clear‐sky pixels exist in most scenes. These clear‐sky pixels provide information for analyses
only if they can be reliably discriminated from cloudy pixels.

2. Methods
2.1. Cloud Masks Assessed

We assess the accuracy of the operational cloud masks that ship with data from the Landsat 8 Operational
Land Imager (OLI; Foga et al., 2017; Roy et al., 2014) and the MODIS (Justice et al., 1998; Platnick et al.,
2003). Users often start the data‐filtering step of remote sensing analyses with these products. The new
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Landsat standard, CFMask, now ships in the BQA file of all Landsat 8
data. The cloud mask for the MOD09GA and MYD09GA products origi-
nates from the MOD35 cloud masking code and also forms the basis for
approaches that utilize additional information from time series (Friedl
et al., 2002; Platnick et al., 2003). Our validation of theMODIS cloudmask
utilizes data from Landsat 8 (section 2.3.1).

Snow varies at a finer spatial scale than clouds. In mountain ranges world-
wide, reflectance signatures of nearly every MODIS snow‐covered pixel
and 93% of Landsat snow‐covered pixels indicate the pixel includes other
land covers (Selkowitz et al., 2014). In contrast, only around 15% of global
cloud cover are from clouds smaller than 10 km2, where most of these
“small” clouds are still much larger than Landsat and MODIS pixels
(Wood & Field, 2011). For this analysis, we assume clouds are bigger than
the sensor's pixel; hence, no fractional cloud‐covered pixels exist, whereas
snow varies at a finer scale and fractional snow‐covered pixels
are plentiful.

For reference, Table 1 shows the band passes and resolutions of the
Landsat OLI (bands 1–9) and the “land” bands from MODIS (bands 1–7
and the cirrus band 26).

2.2. Validation Data Sets

We used two data sets of manually classified Landsat 8 OLI data, 13 scenes
that we analyzed and 13 from the U.S. Geological Survey (2016), to assess

the performance of the Landsat 8 and MODIS cloud masks. Figure 1 shows the locations of the validation
scenes. Landsat 8 validation data sets are a valuable assessment tool for MODIS because acquisitions from
the Landsat 8 and Terra satellites occur within 20 min of each other on similar near‐polar descending orbits.
Manual classification of pixels is more difficult on the coarser 250‐ to 1,000‐m resolution MODIS data com-
pared to the 30‐m OLI data. The close acquisition times of the two satellites minimizes misinterpretation
caused by cloud movement.

Any manual classification approach that relies on Landsat imagery for creating validation data will misclas-
sify some pixels. Foga et al. (2017) estimate the difference between individual analysts at 7%. Thin clouds that
do not have distinguishing reflectance in OLI band 9 and some small clouds fewer than ~10 pixels are diffi-
cult for a human to classify. Snow pixels with fractional snow‐covered area below 50% can be difficult to
identify. Along the borders of a snowpack, some of the pixels with lower snow‐covered area are mistakenly
excluded. Some snow‐free pixels may mistakenly be included because exactly tracing the boundary of every
snowpack and cloud in 30‐m spatial data is impossible.

Table 1
Spectral Intervals (Full‐Width Half‐Maximum) and Spatial Resolution for
the Landsat 8 OLI (Barsi et al., 2014; NASA/USGS Landsat 8 Team, 2014)
and the MODIS “Land” Bands (NASA MODIS Team, 2003)

Band
Wavelength
range (nm)

Spatial
resolution (m) Description

Landsat OLI
1 435–451 30 ultra blue
2 452–512 30 blue
3 533–590 30 green
4 636–673 30 red
5 851–879 30 near‐infrared
6 1,567–1,651 30 shortwave‐infrared
7 2,107–2,294 30 shortwave‐infrared
8 503–676 15 panchromatic
9 1,363–1,384 30 cirrus
MODIS land bands
1 620–670 250 red
2 841–876 250 near‐infrared
3 459–479 500 blue
4 545–565 500 green
5 1,230–1,250 500 near‐infrared
6 1,628–1,652 500 shortwave‐infrared
7 2,105–2,155 500 shortwave‐infrared
26 1,360–1,390 1,000 cirrus

Figure 1. Red dots show the locations of the Landsat 8 validation images.
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Within the 13 scenes that we selected, we manually masked snow, cloud, and snow‐free pixels. Using U.S.
Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.gov/), we previewed false‐color scenes
over the western United States and the Himalaya to find images that included a variety of cloud types and
areas of cloud cover over snow, forest, and bare ground. Scenes with complete cloud cover or no clouds were
excluded. Within chosen scenes, we randomly located regions that contained cirrus clouds, thin clouds, and
opaque clouds colocated with snow‐coveredmountains. Pixels were thenmanually classified as cloud, snow,
or “neither,” that is, clear‐sky and snow‐free, containing either land or open water. Reference layers were
created in ArcGIS using various techniques to enable visualization of each cover type. Snow pixels were
identified using natural color images of Landsat 8 OLI bands 4, 3, and 2, false color images of bands 6, 5,
and 4, and a mask of the Normalized Difference Snow Index (NDSI; Dozier, 1989) from bands 3 and 6.
Opaque clouds were identified using the same natural color bands 4, 3, and 2 along with grayscale images
of bands 2, 4, and 5 and false color images of bands 2, 4, and 5. Images from the cirrus band (band 9) were
used to identify clouds high enough in the atmosphere where minimal water vapor existed above them.
Pixels that were manually identified as more than one cover type were excluded from the reference masks.

The second validation data set of 13 scenes came from the 2014 USGS SPARCSmanual classification data set
(U.S. Geological Survey, 2016) of Landsat 8 OLI subscenes of 1,000 × 1,000 pixels, with each pixel identified
as snow, cloud, cloud shadow, water, land, or bad data. Of 80 scenes in this data set, 13 included significant
snow within the manual masks. We used these 13 scenes and the 13 that we classified to assess the perfor-
mance of the operational CFMask in areas of snow cover. We categorized water and land pixels as neither
given our focus on the ability to distinguish clouds from snow. We excluded the pixels labeled as cloud sha-
dows from the analysis because that class aggregates both shaded snow and shaded vegetation and soil.

Both sets of validation data were generated on Pre‐Collection Landsat data that were then aligned to
Collection 1 Landsat scenes. The manually identified pixels were compared to the pixel classifications in
the BQA file of the Collection 1 data (U.S. Geological Survey, 2017), specifically the CFMask bits for cloud
and cirrus, which were merged into a single binary cloud mask. Most users will employ this default
CFMask, which Foga et al. (2017) determined to be the best cloud mask for Landsat 8 data.

2.3. Error Assessment Metrics

We statistically evaluated the performance of the extant Landsat OLI snow and cloud algorithms and
MODIS cloud algorithm against the manual masks from OLI. We compared the algorithms' classifications
for each class of interest (snow, cloud, and neither) for each pixel to the manual classification. For each class
of interest (snow, cloud, and neither), we categorized each pixel as follows:

1. True positive—TP: Both the automated mask and analysts classify the pixel as the class of interest.
2. True negative—TN: Both the automated mask and analysts classify the pixel as not the class of interest.

The classification of the analyst and the automated mask do not have to match.
3. False negative—FN: Analysts classify the pixel as the class of interest, and the automatedmask classifies it

differently.
4. False positive—FP: Automated mask classifies a pixel as the class of interest, and the analysts classify it

differently.

For each scene and for all scenes aggregated together, the total counts of each category (TP, FP, TN, and FP)
for each class of interest (snow, cloud, and neither) are totaled. The following metrics are used in the error
assessment of the algorithms (Olson & Delen, 2008):

Precision ¼ TP
TP þ FP

(1)

Recall ¼ TP
TP þ FN

(2)

F ¼ 2
Precision×Recall
Precisionþ Recall

¼ 2TP
2TP þ FP þ FN

(3)

Precision represents the probability that a pixel identified as a class is indeed that class. Recall represents the
probability of detection of a pixel of the class of interest. The F score balances the two metrics. Some error
analyses use Omission (missing the class of interest) and Commission (misclassifying the pixel as the class
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of interest) instead. Their correspondences are as follows: Omission = 1 − Recall and
Commission = 1 − Precision. We use Precision and Recall because they more directly convey the ability of
the product to mask scenes. A number closer to 1.0 corresponds to better performance.
2.3.1. Using Landsat 8 Data for MOD09GA Error Assessment
To create a validation data set directly with MODIS data, the 250‐ to 1,000‐m spatial resolutions of MODIS
land bands (Table 1) are too coarse for consistent, accurate manual validation. The boundaries of clouds and
snowpacks are hard to identify in the same contextual way a human analyst can with the spatial and contex-
tual information in a Landsat scene with 30‐m spatial resolution. The similar overpass times of MODIS Terra
and Landsat 8 enable the use of Landsat 8 validation data to assess the MOD09GA cloud mask. While the
clouds are not exactly in the same places in the two acquisitions, the large MODIS pixel size buffers against
cloudmovement, and the typical 20‐min gap between acquisitions means most clouds are nearly in the same
locations. Only MODIS pixels that are fully covered by pixels from the Landsat reference mask are used.
After alignment and removal of partially coveredMODIS pixels, we were left with 21,023manually classified
MODIS pixels. The Landsat reference mask is ternary, with each pixel either cloud, snow, or neither. In coar-
sening the Landsat mask to MODIS pixel size, the resulting pixels have fractional covers of each category.
We therefore classified the MODIS pixel as cloud or snow‐covered if it had fractional coverage of 50% or
more of Landsat reference mask pixels of that class. This coarsening resulted in 2,839 snow, 1,881 cloud,
and 16,249 neither MODIS reference mask pixels. The MOD09GA cloud mask flags pixels as clear, cloudy,
mixed, or not sure. We combined the MOD09GA classifications: pixels flagged as cloudy or mixed as
cloud‐covered and those flagged as not sure or clear as clear. The “not sure” pixels comprised 3.6% of the
data set.
2.3.2. Analyses of Reflectance Spectra
A plausible explanation for the difficulty that algorithms have in masking clouds over snow‐covered terrain
is that some clouds and some snow are spectrally too alike to discriminate, specifically for algorithms that
make classification decisions from spectral thresholding and index tests. In our analysis, we highlight the
difficulty in separating clouds and snow by extracting all snow and cloud spectra from the Landsat 8 valida-
tion data and exploring the similarities and differences between the snow and cloud classes.

To create these snow and cloud spectral libraries for analysis, we used the data set of manually masked
Landsat scenes to extract top‐of‐atmosphere reflectance spectra of the snow and cloud pixels from all the
scenes. This extraction resulted in spectral libraries of 4.6 million snow pixels and 3.3 million cloud pixels.

To test the hypothesis that most snow and cloud pixels are spectrally distinct, but some are similar, we per-
formed k‐means unsupervised classifications of equally sized random subsets of the snow and cloud pixels
from the spectral library. k‐means classification (Hastie et al., 2009) maximizes similarity within each cluster
while maximizing dissimilarity between clusters. Using k‐means in this manner gives an overview of simi-
larity between known classes of pixels. By running the same classification on different random subsets of
pixels, we highlight the similarity or dissimilarity in spectral signatures between the classes. Because equally
sized subsamples of pixels from the two spectral libraries are used, two classes of pixels that are inseparable
and spectrally identical would lead to two clusters output from the classifier that are a 50/50mix of both class
types. Conversely, two classes of pixels that are spectrally unique will be output from the classifier as two
clusters that each have 100% membership from one of the input classes. How various runs compare between
these two extremes enables us to determine what may lead to the similarity or dissimilarity between classes.

Snow and cloud pixels were classified with k‐means using the spectral angle as the distance metric (Kruse
et al., 1993) and the number of output clusters set to two. Pixels are clustered based on their similarity in
angle away from the origin in multidimensional space, where each Landsat 8 band reflectance is a dimen-

sion. Given two spectral vectors R1
�!

and R2
�!

, the cosine of the spectral angle ∠λ is the dot product of the
two vectors divided by the product of their Euclidean norms:

∠λ ¼ cos−1
R1
�!

·R2
�!

R1
�!���

���
2
× R2

�!���
���
2

0
B@

1
CA (4)

Two pixels of the same class with reflectances of different magnitudes but similar spectral shape have similar
spectral angles.
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The magnitudes of the reflectances may be as important as the spectral angle for the most similar snow and
cloud pixels. When detecting clouds or snow in Landsat 8 OLI bands 6 and 7, ice or water absorption domi-
nates the signal with similar spectral shape, yet reflectance magnitude is sensitive to the size of the droplet or
crystal. To test if the absolute magnitude of the signal is also important for snow and clouds, a second run of

k‐meanswas performed using the Euclidean norm of the differences, R1
�!

−R2
�!���

���
2
, as themetric for clustering

and the number of output clusters again set to two. Landsat OLI bands 1–7 were used for these classifications.
Band 9 was omitted because the top‐of‐atmosphere cirrus band reflectance depends on the atmospheric
water vapor above each pixel; band 9 misidentifies many high‐elevation snow‐covered pixels as cirrus.

We performed three runs of k‐means classification: all snow and cloud pixels, snow and similar cloud, and
the snow and dissimilar cloud. “Similar” cloud pixels have SWIR reflectances (bands 6 and 7) that are less
than or equal to the 99th percentile of snow reflectances in the same bands from the snow pixel library.
Thirty‐five percent of the cloud spectral library met these criteria and were identified as similar cloud and
snow. We used the 65% of the cloud spectral library that were excluded from this data set as the data for
the unsupervised classification of dissimilar cloud and snow. Results from the unsupervised classification
were compared with Precision, Recall, Overall Accuracy, and Separation, where the cluster is classed as
the majority fraction of reference pixels it contains. Precision and Recall are the same tests used to assess
the errors in the snow and cloud masks; Separation is the distance between the centroids of the two clusters
using the same distance metric that the classification was run on. Because we have restricted the classifica-
tion to two classes of the same size, Overall Accuracy (TP+TN)/(TP+TN+FP+FN) is also a useful measure.

2.4. Modeling Reflectance of Snow and Cloud Pixels

We model the spectral signatures of water clouds, ice clouds, and mixed clouds based on the refractive
indices of ice and water, the sizes of the water droplets and ice crystals, the clouds' water equivalent, wetness
in the case of mixed clouds, the illumination geometry, and the reflectance of the surface beneath the clouds.
We model the spectral signature of snow based on effective optical radius, dust size and concentration, the
fractional cover of the snow in the pixel, and the reflectance of the surface comprising the remainder of the
pixel. For each pixel analyzed, we invert the models to estimate cloud properties and snow properties that
match the measured reflectances best. The physically based scattering model (Warren & Wiscombe, 1980;
Wiscombe & Warren, 1980) is forced by the Mie scattering parameters for a sphere (Bohren & Huffman,
2007; Nussenzveig & Wiscombe, 1980) and the complex refractive indices of ice (Warren & Brandt, 2008)
and water (Hale & Querry, 1973; Kou et al., 1993) to generate snow and cloud spectra with spherically
equivalent radii that encompass the size distributions in clouds and snow. The Simple Model of the
Atmospheric Radiative Transfer of Sunshine (Gueymard, 2005) generates the irradiance spectra illuminat-
ing the modeled snowpack along with atmospheric transmittance and thereby top‐of‐atmosphere reflec-
tance. The snow spectra are linearly mixed with soil and vegetation spectra from the ECOsystem
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) spectral library (Baldridge
et al., 2009; Meerdink et al., 2019) to compute the reflectance of partially snow‐covered pixels. The modeled
clouds are not opaque, and the same spectral library is used to set the background reflectance
underneath clouds.

We test the hypothesis that some snow and cloud pixels can have spectra from Landsat 8 OLI that match
pixels of the opposite class. Snow pixels that CFMask classes as clouds and cloud pixels that CFMask classes
as snow are considered in inversion models to solve for the best matches of cloud and snow properties that
match the measurements. The inverted properties are then used to model the reflectances throughout solar
spectrum at the wavelengths of the AVIRIS‐NG airborne instrument (JPL AVIRIS Team, 2018), 380 to 2,500
nm at 5‐ to 6‐nm resolution, to investigate if measurements from a spectrometer would distinguish snow
from clouds, whose discrimination might be missed by Landsat 8 OLI.

3. Results
3.1. Assessment of Errors in CFMask and MOD09GA Cloud Mask

Figure 2 shows three examples of our approach for analyzing cloud masks. Supporting information Table S1
provides error statistics for all 26 scenes, along with each acquisition's terrain characterized by the percent
cover of mountain landforms from the global Hammond landform regions (Karagulle et al., 2017), which
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quantifies Earth's mountainous locations at 250‐m horizontal scale. Two of the USGS SPARCS masks with
snow have no mountain cover, and their inclusion expands the range of snow spectra analyzed. One was an
acquisition at high illumination angle from the Greenland ice sheet, and the second was of cropland with
variable snow‐covered area. A USGS SPARCS mask of the Antarctic Peninsula Cordillera is outside the
boundary of the Hammond data set, so no mountain fraction was calculated. The scenes show differing
proportions of cloud versus snow. The left column in Figure 2, from the New Zealand Alps, has roughly
equal fractions of cloud and snow. The middle column from the Assam Himalaya in Bhutan has many
clouds. The right column from the Bernese Alps in Switzerland consists mostly of snow. The images show
the error results for clouds (TPcloud, TNcloud, FPcloud, FNcloud) with a class identifier for pixels that

Figure 2. Examples of CFMask andMOD09GA cloudmask performance over three areas with varying degrees of cloud cover. Pixels are colored by surface type and
identified as false negative (FN), true negative (TN), false positive (FP), or true positive (TP) in the cloud mask. (left column) New Zealand Alps: Climax Peak
(2,446 m) in the Pyke and Dart River Basins, clouds and snow about equal. (middle column) AssamHimalaya: below Chura Kang (6,300 m) in Bhutan, cloud cover
extensive but snow visible. (right column) Bernese Alps: Lötschental and Bietschhorn (3,924 m), mostly snow with few clouds.

10.1029/2019WR024932Water Resources Research

STILLINGER ET AL. 6175



were not cloudy. TNcloud_is_neither pixels are clear‐sky snow‐free pixels and TNcloud_is_snow pixels are
clear‐sky snow‐covered pixels, with neither class mapped as cloud by the satellite. FPcloud_is_neither
pixels are clear‐sky snow‐free pixels and FPcloud_is_snow pixels are clear‐sky snow‐covered pixels, with
both classes mapped as cloud by the satellite. FNcloud are cloud pixels mapped as something else,
FNcloud_classed_snow are a subset of this group that the satellite mapped as snow.

Table 2 shows the performance of the Landsat 8 CFMask and the MOD09GA cloud mask aggregated across
all test scenes for the classes of interest, along with the ranges of values among all scenes. Generally, the
Precision and Recall for the CFMask are high, whereas the Recall performance for the snow mask is lower.
The MOD09GA mask does not include a snow class. In comparison to the CFMask, the MOD09GA cloud
mask has a high Recall value (i.e., it sees most of the clouds) but low Precision (many false positives). The
absolute value of each scene's central latitude was used to determine the proportion of variance in error sta-
tistics explained by scene location. The day of the water year, starting 1 October for Northern Hemisphere
scenes and 1 April for Southern Hemisphere scenes, was used to determine the proportion of variance in
error statistics explained by seasonality. R2 values for both tests showed no significant attribute of error sta-
tistics explained by season or location.

3.2. Reflectance Spectra of Manually Classified Pixels

Figure 3 shows histograms for top‐of‐atmosphere reflectances in Landsat OLI bands 1–7 and 9 for the manu-
ally classified cloud and snow pixels, along with the histograms for the misclassified pixels. The figure indi-
cates that most snow and cloud spectra are easily distinguishable. Snow is brighter in visible bands and
darker in SWIR bands than most cloud spectra. Yet despite the general differences, spectral characteristics
of numerous pixels in each class overlap.
3.2.1. Cirrus Band Reflectance From Snow at High Elevation
The wavelengths in the cirrus bands, Landsat OLI band 9 and MODIS band 26 (Table 1), experience absorp-
tion by atmospheric water vapor, so reflectance values in these bands are intended to map clouds high in the

Table 2
Performance of the Landsat 8 CFMask and the MOD09GA Cloud Mask

Landsat 8 CFMask MOD09GA Cloud Mask

Aggregated scenes Aggregated scenes

Precision Recall F statistic Precision Recall F statistic

Cloud 0.695 0.857 0.768 Cloud 0.166 0.723 0.270
Snow 0.938 0.787 0.856
Neither 0.943 0.975 0.959 Neither 0.964 0.602 0.741

Scene‐by‐scene Median (min, max) Scene‐by‐scene Median (min, max)

Precision Recall F statistic Precision Recall F statistic

Cloud 0.803 0.793 0.771 Cloud 0.111 0.833 0.156
(0.03, 0.99) (0.03, 0.98) (0.03, 0.96) (0.00, 1.00) (0.00, 1.00) (0.00, 1.00)

Snow 0.897 0.449 0.536
(0.65, 1.00) (0.00, 1.00) (0.00, 0.98)

Neither 0.850 0.929 0.867 Neither 0.977 0.415 0.495
(0.00, 0.99) (0.28, 1.00) (0.00, 0.99) (0.18, 1.00) (0.00, 1.00) (0.00, 1.00)

Latitude versus Error (R2) Season versus Error (R2)

Landsat 8 OLI MOD09GA Landsat 8 OLI MOD09GA

Precision 0.05 0.10 0.01 0.00

Recall 0.03 0.01 0.22 0.01

F statistic 0.01 0.01 0.03 0.00

Note. Top panel shows summary statistics for CFMask and MOD09GA cloud mask performance in the test scenes for each class, by aggregate of all scenes and
median, minimum, and maximum values for individual scenes. Bottom panel shows the R2 values for individual scene errors compared to the scenes' latitudes
and seasonality.
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atmosphere. However, snow at high elevation also lies above most of the atmospheric water vapor, so the
cloud masks based on putative cirrus observations often identify snow as clouds. One test for “potential
cloud pixel” in the CFMask algorithm treats a top‐of‐atmosphere reflectance of 0.01 as having a 25%
probability of identifying cirrus and a reflectance of 0.04 or greater with a 100% probability of cirrus (Zhu
et al., 2015). These probabilities accumulate with the cloud probability scores from temperature and
spectral variability. Figure 4 shows Landsat 8 OLI imagery of a 37 × 40‐km area in Himachal Pradesh,
India, acquired on 8 February 2016 in support of the ISRO‐NASA AVIRIS‐NG Indian campaign (Space
Applications Centre, 2017). Elevations in the area range from 3,100 to 6,100 m, and nearly all band 9 top‐
of‐atmosphere reflectances exceed the CFMask's 0.04 threshold. Reflectance values from MODIS band 26
would likely be similar.
3.2.2. Similar Spectra of Snow and Clouds
Top‐of‐atmosphere reflectances in Landsat OLI bands 6 and 7 for dark clouds are below the 99th percentile
of the snow spectra in these two bands (this reflectance value is about 0.2 for both bands). Thirty‐five percent

Figure 3. Normalized histograms of the top‐of‐atmosphere reflectance in Landsat 8 OLI bands 1–7 and 9 for manually classified snow and cloud pixels, along with
histograms for misclassified pixels, combining snow classified as cloud (FPcloud_is_snow) and cloud classified as snow (FNcloud_classed_snow). The snow spectral
values show a bimodal distribution with one mode in line with the skewed distribution of the cloud spectra.

Figure 4. (left) False‐color rendition of Landsat 8 OLI image on 8 February 2016 in the Himachal Pradesh, India. (middle) Corresponding elevations from
Cartosat‐2. (right) Values of Landsat 8 OLI band 9 top‐of‐atmosphere reflectance that exceed 0.04, with values less than 0.04masked in red. Values above 0.04 would
be classified as cloud even though there are no clouds in the frame. The use of band 9 to identify clouds will identify snow at high elevation as clouds.
OLI = Operational Land Imager. UTM = Universal Transverse Mercator.
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of the clouds in the spectral library meet this criterion. Figure 5 shows examples of spectra modeled as snow
and cloud within the Landsat 8 OLI bands and for the wavelengths of the AVIRIS‐NG imaging spectrometer,
along with the region of interest in the Landsat image where the data were acquired. We identified the snow
and cloud properties by solving for values for each that minimized the Euclidean norm of the differences
between measured and modeled reflectances in Landsat OLI bands 1–7. From a random sample of ~1,000
pixels with classification errors over the 26 Landsat scenes, we found that the Landsat spectral signature
of 24% of the FNcloud_classed_snow pixels and 32% of the FPcloud_snow pixels matched plausible snow
and cloud properties. All simulations considered a dark loam (Class Inceptisol, Subclass Xerumbrept) from
the ECOSTRESS Library (Meerdink et al., 2019) as the surface underlying the cloud or occupying the snow‐
free part of the pixel).

Although the snow and cloud spectra are distinctive if the full spectrum is considered, in the wavelength
bands of the OLI they are not, and the reflectance in the cirrus band (band 9) would not clarify the spectra
as snow or cloud. An imaging spectrometer, as recommended in the recent Decadal Survey for Earth Science
and Applications (National Academies of Sciences, Engineering, & Medicine, 2018), could distinguish
between the snow and the cloud.

Traditional snow mapping methods often employ the NDSI (Dozier, 1989); typically the green and short-
wave infrared bands are used, thus bands 3 and 6 for the Landsat 8 OLI, so NDSI = (R3 − R6)/(R3+R6).
Figure 6 shows the range of NDSI values for various sets of pixels in the study. Snow with similar spectral
characteristics to clouds has similar NDSI values, shown in the boxplots of dark cloud and false positive
snow pixels, that is, the snow pixels misclassified as cloud by CFMask. Clouds with similar spectral charac-
teristics to snow have similarly high NDSI values, shown in the similarity of boxplots of snow NDSI and the
NDSI of cloud pixels that CFMask misclassifies as snow. Many of the false positive snow spectra are outliers
within the context of the entire snow spectral library. Most snow has a high NDSI value between 0.5 and 1,
distinguishing it from clouds, which tend to have NDSI values from −0.4 to +0.4. However, the outlier con-
ditions that are confused with clouds comprise a source of error in scenes where the snow cover is composed
of these more difficult‐to‐discriminate snow pixels.

Snow that covers an entire pixel is spectrally distinguishable frommost clouds, but snow pixels that are frac-
tional mixtures with other surface types can have spectra that are like some clouds. For fractional snow pix-
els, visible reflectance decreases, and SWIR reflectance increases as soil fraction increases. At the coarse
spectral resolution of Landsat and MODIS, the spectra of the mixed “bright SWIR” snow pixels mimic some
cloud spectra. The FPcloud_snow pixels at the borders of clouds in Figure 2 and the spectra in Figure 5 high-
light this effect.

3.3. k‐Means Analyses

Table 3 shows k‐means performance for three runs using spectral angle to measure the similarity of snow
and cloud pixels and the single run using the Euclidean norm to measure the similarity among the 35% of
cloud pixels that are “dark.” The other 65% of cloud pixels are grouped as “bright clouds.” The ability to sepa-
rate snow from clouds decreases as the spectra become similar. Separation, Precision, and Recall decrease
when the snow is classified with the similar “dark cloud” pixels. For these most similar snow and clouds,
Precision of snow and Recall of clouds improve by using a magnitude‐based measure over a spectral
angle‐based measure, but performance is still worse than the other two spectral angle runs as these two sets
of pixels, dark clouds and snow, are spectrally similar.

4. Discussion
4.1. Cloud Mask Performance

Cloud masking algorithms perform worse over snow‐covered areas compared to other land surfaces because
the multispectral sensor measurements can contain snow spectra indistinguishable from clouds and cloud
spectra indistinguishable from snow. Significant improvement in our abilities to distinguish clouds from
snow must utilize additional information beyond per pixel spectral characteristics.

Table 4 displays the results from prior cloud masking studies for comparison to the MOD09GA and CFMask
performance measures from this study. CFMask performance is lower over snow‐covered mountain regions
compared to previous global assessments of Landsat 8 cloud masking. The Recall and Precision of CFMask
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Figure 5. Examples of similar snow and cloud spectral signatures in the Landsat 8 OLI bands, chosen for illustration frommany examples. The upper images show
FNcloud_classed_snow (clouds were missed because they were identified as snow); the lower row of images shows FPcloud_is_snow (snow was misclassified as
cloud). In the corresponding graphs, the gray bars show measured OLI spectra. The symbols show these spectra modeled as snow (blue) and ice clouds (red) with
minuscule (10−8) liquid water concentration, and the text within the figures identifies the snow and cloud properties that match the spectra. fSCA is the fractional
snow cover of the pixel, and WE is the cloud water equivalent. The background reflectance is for a dark loam (Class Inceptisol, Subclass Xerumbrept). The
reflectances in the Landsat bands are similar enough to obviate snow‐cloud discrimination. The blue and red lines show they would be distinguishable with con-
tinuous measurements over the wavelengths of the AVIRIS‐NG sensor, 380 to 2,500 nm at 5‐ to 6‐nm resolution. OLI = Operational Land Imager; FN = false
negative; FP = false positive.
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over mountains is lower compared to prior error assessments in polar
regions of CFMask, the best cloud mask in these regions tested by Foga
et al. (2017). The MOD09GA cloud mask has lower performance metrics
compared to the CFMask results of the same scenes and to all prior studies
that assessed Landsat 8 cloud mask performance. Both MODIS and
Landsat scenes exhibit a spread in performance based on the local compo-
sition of each scene. Therefore, depending on the spectra of the cloud and
the snow in the scene, performance can vary from excellent
to unacceptable.

The performance measures of CFMask to classify clear‐sky pixels without
snow exceeded 95%. Low fractional snow cover leads to bright SWIR snow
pixels and can be difficult to detect by a human analyst, and the false posi-
tive cloud mask pixels from CFMask that were clustered around the bor-
ders of the snow suggests that many of these pixels contained fractional
snow missed by the analysts. Users should be comfortable using
CFMask for identifying clear‐sky snow‐free pixels in mountain scenes
unless the region of interest is the boundary around a snowpack.

TheMODISMOD09GA cloudmask has worse performance than CFMask
with low Precision and moderate Recall. One plausible factor for worse performance may have been the
manner in which the OLI reference mask, which we coarsened to MODIS resolution using Gaussian pyra-
mid reduction (Burt & Adelson, 1983), was used to assign a single reference class to each MODIS pixels. We
tested OLI reference mask coverage thresholds of 10% and 100% for classing MODIS pixels. This variability
had moderate impact on precision (0.223 and 0.0917) and minimal impact on recall (0.699 and 0.72).

The MOD09GA algorithmmisclassifies many snow pixels in each scene as cloud, and many cloud pixels are
missed and can be mistaken for snow. This pervasive misclassification presents a challenge for extracting
snow data from MODIS imagery. The misclassification of snow as cloud and vice versa adds bias to models
of snowmelt (Andreadis & Lettenmaier, 2006) and estimates of snow water equivalent (Rittger et al., 2016)
that assimilate data from MODIS. Improvement of cloud masks over snow could improve these models.

One reason for the decrease in performance compared to the Landsat 8 product is that the 500‐m cloudmask
must classify more mixed pixels than the Landsat 8 30‐m cloud mask. The spatial scale of MODIS pixels cre-
ates spectral mixture problems for more pixels. Sixty percent ofMODIS pixels for which the Landsat CFMask
correctly classified cloud and snow had snow or cloud coverage fractions less than 100% coverage. The false
positive rate of the MOD09GA cloud mask is also significantly higher than that of CFMask. Many clear‐sky,
bare ground pixels were included in the MOD09GA cloud mask, so while the remaining pixels may be bare,
many useable pixels of surface reflectance are mistakenly masked as cloud, a problem that was not observed
in Landsat 8 imagery. Users cannot assume that MODIS pixels are either entirely cloud‐free or entirely
cloud‐covered in imagery over mountains. The mixed‐pixel problem for cloud classification at 500‐m resolu-
tion is fundamentally different than at 30m for Landsat, as mixed cloud pixels are rare at the smaller Landsat
spatial scale. These larger mixed pixels in MODIS reduce the sharpness of the spectral differences between
pure endmembers of snow, clouds, and other surfaces.

Figure 6. NDSI calculations for subsets of the snow and cloud spectral
libraries. Outliers are not plotted, but the box‐and‐whisker plot shows
overlaps among the classes. Bright clouds and snow differ significantly,
whereas dark clouds and snow show enough overlap to cause misclassifi-
cation. Cloud pixels classified as snow by CFMask and true snow pixels are
spectrally similar. Clouds can look like snow and snow can look like clouds.
NDSI = Normalized Difference Snow Index; FN = false negative; FP = false
positive.

Table 3
Performance Statistics for the Unsupervised Classification of the Snow and “Dark Clouds,” Snow and All Clouds, and Snow
and “Bright Clouds”

Precision Recall

Method Spectral libraries Separation Overall accuracy Snow Cloud Snow Cloud

Spectral angle Snow/bright cloud 0.09 0.957 0.961 0.953 0.953 0.961
Snow/cloud 0.08 0.918 0.894 0.945 0.948 0.887
Snow/dark cloud 0.07 0.850 0.796 0.927 0.940 0.759

Euclidean norm Snow/dark cloud 0.788 0.841 0.744 0.698 0.878

Note. The separation distance metric for the Euclidean norm is excluded as no comparative runs were needed.
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We did not directly analyze snow masking abilities of the MOD9GA cloud mask, because the MODIS QA
bands for snow detection do not confirm snow or ice but just flag the processing path of the cloud mask algo-
rithm for that pixel. The MODIS Collection 6 snow mask is an ancillary data product unrelated to the cloud
mask. The existing snow masking for MODIS relies on the cloud mask to identify cloud pixels, and the poor
results of the MOD09GA cloud mask show that any analysis of snow that removes pixels that are flagged as
clouds will likely elide valid snow‐covered pixels.

The snow masking code in CFMask is based on NDSI and band 9 cirrus thresholds. Moreover, the mask is
conservative towards clouds; if there is ambiguity in the algorithm logic, it classifies the pixel as cloud
instead of snow. Many of the false positive snow pixels classed as cloud are outliers on the library of snow
spectra, but many of these pixels are around the snowline. As the snow melts and disappears, the fractional
snow‐covered area of pixels decreases, and pixels transition from the interior of the snowpack to the bound-
ary. These are important to class as snow for modeling snow water equivalent and snowmelt runoff.

4.2. Spectral Library Insights

This project benefited from an extensive set of reference data that included a snow class separate from other
land surfaces to test cloud mask performance. The manually classified snow and cloud masks enabled us to
construct a spectral library to explore if snow and cloud can have similar spectral signatures. Our spectral
library does not necessarily represent the frequency and range of possible cloud and snow spectra encoun-
tered in remote sensing imagery, but scene‐by‐scene statistics and the library of all scenes' spectra together
highlight the likelihood for indiscriminate snow and cloud spectra within a scene.

The insight that spectral reflectance of 35% of the cloud pixels in the study resemble spectral reflectance of
snow in the SWIR bands confirms that while most snow and cloud are spectrally distinct, the problem of
spectral indiscrimination is not a fringe issue. The k‐means analysis compares the similarity between the
two classes based on a classification technique that relies exclusively on a calculation of spectral similarity.
The fractions of pixels within the spectral library that exhibit strong similarities to the general spectral char-
acteristics of the opposite class is too large to be attributed to chance or random error. In situations where the
reflectances in the SWIR bands are similar for snow and clouds, discrimination between them
becomes difficult.

Spectra from pixels with large fractions of subpixel soil can resemble spectra of thin clouds, with the mixed
pixels showing elevated SWIR reflectance compared to the snow within the mixture. Further anecdotal evi-
dence lies in the band of misclassified clouds around the edges of the snowpack in some Landsat 8 images.
The same pattern is observed in theMODIS data, where at 500mmanymore of the snow pixels are mixtures,
increasing the misclassification rate compared to Landsat. In addition to snow with elevated SWIR reflec-
tance, clouds with low reflectance in SWIR bands are common and their NDSI values resemble those for
snow. Reflectance in Landsat OLI band 9 or MODIS band 26 of snow at altitude will often have values like
those of cirrus clouds.

4.3. Ideas for Improving Cloud Masks in Imagery From Multispectral Sensors

Resolving these types of discrimination issues requires new approaches to cloud masking that account for
local viewing conditions, textural features, and persistence. This error analysis and spectral investigation
helps formulate ideas for future improvements in cloud masking over snow‐covered terrain. For snow‐cloud
discrimination in a single Landsat 8 or MODIS image, textural features might be used; our data set provides
information to develop such approaches. Mountainous terrain itself provides spatial patterns in imagery, so

Table 4
Comparison of Error Statistics for CFMask and the MOD09GA Cloud Mask to Published Error Statistics

Cloud Mask Precision Recall

MOD09GA cloud mask in snow‐covered mountains (this study) 0.166 0.723
CFMask for clouds in snow‐covered mountains (this study) 0.695 0.857
CFMask for snow and ice (Foga et al., 2017, Table 7) 0.757 0.866
CFMask global assessment (Foga et al., 2017, Table 5) 0.880 0.973
Fmask global sample (Hughes & Hayes, 2014) 0.740 0.986
ACCA “best cloud mask over snow/ice” (Foga et al., 2017, Table 7) 0.706 0.993
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one potential approach is to see whether those patterns cannot be recognized in an image because of
obscuration by clouds.

The twice dailyMODIS daytime acquisitions allow cloud discrimination by examining the time series, apply-
ing various filters, and interpolating to fill the gaps caused by obscuring clouds (Gafurov & Bárdossy, 2009;
Helfrich et al., 2007; Tran et al., 2019). Sentinel 2a&b along with Landsat 8 provide coverage at repeat inter-
vals of 4 days. Their coincident overpass times with MODIS Terra could offer additional validation data for
MODIS and perhaps a source of training data for machine learning approaches to cloud masking with
MODIS. Detection of cloud movement would be especially useful with data from geostationary satellites.
The improved capabilities of the generation of GOES‐16/17 (U.S.), Himawari‐8/9 (Japan), and
FengYun‐4 (China) satellites show promise for leveraging the spectral capabilities of MODIS and its succes-
sors with the high temporal frequency of geostationary satellites to mask clouds over snow.

Going forward, a reliable cloud mask is necessary to create the best snow mask. By including currently
missed clouds in a cloudmask and excluding the misclassified snow, existing snow‐mapping techniques that
are reliably used under clear‐sky conditions could be extended with similar performance to cloudy scenes.

4.4. The Case for Imaging Spectroscopy

Among the five observations in the “designated” (high priority) class recommended by the National
Academies of Science, Engineering, and Medicine for future space missions is imaging spectrometry in
the visible and shortwave infrared and multispectral imagery in the thermal infrared (National Academies
of Sciences, Engineering, & Medicine, 2018). As Figures 4–6 show, existing multispectral sensors sometimes
have similar spectral signatures for snow and clouds. Measurements of spectral reflectance across the solar
spectrum from 400 to 2,500 nm at 5‐ to 10‐nm resolution would enable unambiguous discrimination with
reliable estimates of soil or vegetative background reflectance, the sizes of the scattering ice crystals or water
droplets, fractional snow cover, thickness of clouds, and degradation of snow albedo by dust or soot.

5. Conclusion

Satellite measurements provide our best resource for furthering our understanding of the cryosphere. Cloud
masking algorithms over snow‐covered terrain perform poorly compared to over other land surfaces, and
existing cloud masking performance depends on local cloud and snow types and cannot deliver consistently
accurate results. In multispectral images of the visible and infrared spectra, many clouds and snow pixels are
unambiguously separable, mainly for thick clouds and snow that fully covers a pixel. However, variations in
snow and cloud properties can cause overlap in their spectral signatures within a scene. While multispectral
differences alone can identify many pixels correctly as cloud or snow, others remain ambiguous. Landsat 8
OLI data confirm the possibility of cloud spectra like snow or snow spectra like cloud as a plausible source of
algorithm misclassifications. Availability of imagery from a future spaceborne imaging spectrometer would
provide validation data to evaluate new multispectral methods for snow‐cloud discrimination.

Data

This paper does not exhaust the ways in which the data we have assembled could be used to understand
snow‐cloud discrimination. Although we plan to explore newmethods using these data, all data that we cre-
ated are available (at Stillinger & Collar, 2019) to other researchers interested in the same problem. Table S1
lists all 26 Landsat 8 OLI and correspondingMODIS images analyzed in this study. The data we provide with
unrestricted access include the geoTIFFs where we have manually identified snow and clouds in 13 images.
The collection from the U.S. Geological Survey (2016) includes full‐resolution images from their manual
classification. We also provide the spectral libraries for clouds, snow, false positives, and false negatives in
the manually classified imagery. MATLAB code for the snow albedo model (based on Wiscombe &
Warren, 1980) is available on GitHub at the website (https://github.com/edwardbair/SCAGD/). The
SMARTS model for atmospheric radiation is available from the National Renewable Energy Laboratory
(https://www.nrel.gov/grid/solar‐resource/smarts.html). The ECOSTRESS spectral library of natural and
human‐made materials is available from JPL (https://speclib.jpl.nasa.gov/).
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