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A B S T R A C T   

The impact of wildfire on water availability is a critical issue in the western United States. Because actual 
evapotranspiration (ETa) constitutes the largest loss in the terrestrial water budget, it has been suggested that 
fire-induced ETa reduction is a primary driver of elevated post-fire discharge. Ten gaged watersheds with burns 
exceeding 5% of their total contributing drainage area were selected from California, Oregon, Montana, Utah, 
New Mexico, and Colorado. Continuous daily stream gage data were compiled, and 30-meter ETa estimates were 
calculated with the Operational Simplified Surface Energy Balance (SSEBop) model. Fire-induced ETa shifts were 
quantified with statistical tests that compared pre and post-fire monthly ETa in burned and unburned pixels; the 
dampening effect of scale was also evaluated by repeating tests on all pixels from the entire basin. As streamflow 
data are point measurements that aggregate a large spatial area, additional statistical methods were required to 
isolate the effect of fire from climate on baseflow and runoff. Key findings include a) significant fire-induced ETa 
reductions were only distinguishable in basin-scale monthly datasets when at least 73% of the basin burned, b) 
the effect of wildfire disturbance on streamflow magnitude was seasonably variable, c) streamflow was modified 
in basins with as little as 6% burned drainage area; however, shifts only persisted beyond the fifth post-fire year 
where more than three-quarters of the basin was fire-impacted, and d) surplus water from ETa reduction was 
sufficient to account for boosted fire-induced streamflow. Where fire-induced streamflow increases were not 
significantly correlated with ETa anomaly, other fire-impacted landscape processes may have contributed to 
modified runoff generation and routing. Where fire reduced ETa but streamflow shifts were not detected, 
compensatory ETa pathways may have consumed the excess water before it reached the gage. Findings suggest 
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that water providers with small source-water collection areas have higher relative risk for fire-induced hydro
modification than providers with larger or more diversified supply portfolios. Results also illustrate the tendency 
of overarching climate signals to mask or artificially boost the apparent effect of landscape disturbance on 
streamflow at the basin outlet.   

1. Introduction 

Severe and erratic wildfire behavior has become more common since 
at least the mid-1980 s and is causing concern in the western United 
States (Bladon et al., 2014; Chow et al., 2021; Hallema et al., 2018; 
Martin, 2016; Murphy et al., 2018). Substantial effort is being spent to 
identify short and long-term fire wildfire trends (Crawford et al., 2015; 
Parks and Abatzoglou, 2020), fire’s role in landscape ecology (David 
et al., 2018; Lake et al., 2017) and geomorphology (Keller et al., 2019; 
Shakesby and Doerr, 2006), and the risks posed by wildfire to built and 
natural environments (Martin et al., 2016). Despite progress in identi
fying and understanding critical processes, the location-specific effects 
of wildfire-related forest disturbance on downstream water supplies 
remain unclear. Additional uncertainty is introduced by the confound
ing pressures of climate aridification (Overpeck and Udall, 2020) and 
increasing climate variability (van der Wiel and Bintanja, 2021; Zhuang 
et al., 2021) as they often co-occur with wildfire activity in forested 
watersheds. 

Reports of increased flooding, hillslope erosion, debris flows, land
slides, reservoir sedimentation, and water quality degradation following 
wildfire are common in the American West and elsewhere (Burke et al., 
2013; Emelko et al., 2016; Moody and Martin, 2009; Nunes et al., 2018; 
Nyman et al., 2020; Rust et al., 2018; Santi and Morandi, 2013; Saxe 
et al., 2018). Concurrently, the mechanistic linkage between actual 
evapotranspiration (ETa) and streamflow has been demonstrated 
(Goeking and Tarboton, 2020; Goulden and Bales, 2014; Kirchner et al., 
2020; Kirchner and Allen, 2020), suggesting a physical connection be
tween ETa and the aforementioned fire-exacerbated hydrogeomorphic 
hazards. Such a linkage would be sensible as a) ETa is the most sensitive 
hydrologic component to vegetation changes, and b) it is often the 
largest loss in terrestrial water budgets, making it a principal arbiter of 
precipitation partitioning (Neary et al., 2005). However, the direction 
and magnitude of post-fire ETa and streamflow shifts are often variable, 
especially where topographic, climatic, and ecologic gradients are steep 
(Blount et al., 2020; Collar et al., 2021; Goeking and Tarboton, 2020; 
Kinoshita and Hogue, 2015; Ma et al., 2020; Saxe et al., 2018). 

ETa is a spatially and temporally varying process because the systems 
that control it are themselves fluctuating over space and time. At a single 
location, the ETa rate may be a function of surface energy fluxes and 
states (e.g., net radiation, sensible and latent heat exchange, reflective 
properties of a body), surface meteorology (e.g., precipitation, wind 
speed, relative humidity, surface aerodynamic skin temperature), bio
physical controls (e.g., soil moisture-holding capacity, stomatal 
conductance, rooting structure, aerodynamic resistance of the plant 
canopy), and landscape characteristics (e.g., topography, additional 
sources of roughness) (Chang, 2012; Lettenmaier et al., 2015; Maid
ment, 1993; Neary et al., 2005). The timescales at which the states or 
rates of ETa’s drivers range are considerable: precipitation, for example, 
has variable intensity during a single storm event as well as in accor
dance with multi-year cycles (e.g., decadal oscillations), longer-term 
trends (e.g., anthropogenic climate change), and hydroclimatic pro
cesses (e.g., glaciation) (Beyene et al., 2021; Eskridge et al., 1997; Xu 
et al., 2014). Even at the same location, the ETa flux can be energy or 
water-limited depending on seasons and over interannual timescales 
(Budyko, 1974; Ryu et al., 2008; Xu et al., 2014). As an added layer of 
complexity, many of the variables that control ETa rates are vulnerable 
to abrupt modification from acute landscape disturbance (Jin et al., 
2012; Sexstone et al., 2018; Slinski et al., 2016). 

Downstream, quantifying the effect of landscape disturbance on 

streamflow is challenging as prevailing climate (precipitation, air tem
perature, potential evapotranspiration (ETp or PET)) can drive a ma
jority of observed streamflow variability in undeveloped watersheds 
(Bart et al., 2016; Bart and Tague, 2017; Jaramillo and Destouni, 2014). 
This is especially the case where the percentage of disturbed contrib
uting drainage area is relatively small because the explanatory power of 
the overarching climate signal can easily mask or exaggerate the 
apparent effects of the disturbance at the gage (Hallema et al., 2018). 
Readily available remotely sensed data and reanalysis products bring 
this challenge to the forefront because they enable before-after/control- 
impact evaluations to be conducted via observation of the same location 
through time where a paired (reference) watershed approach may have 
been used otherwise (Conner et al., 2016; Downes et al., 2002; Eber
hardt, 1976). The need to identify and monitor a reference basin is 
removed as pre-fire observations from the disturbed area can be used as 
a control, however, climate signals can no longer be accounted for by 
comparing the disturbed and reference basins (Beyene et al., 2021; 
Goulden and Bales, 2014; Hallema et al., 2017). Numerous studies have 
proposed statistical and process-based methods for separating the effects 
of landscape drivers from climate drivers on catchment runoff and 
baseflow (Bart and Tague, 2017; Beyene et al., 2021; Cong et al., 2009; 
Hallema et al., 2018; Kurzweil et al., 2021; Wine et al., 2018; Xu et al., 
2014), thus providing an analytical framework for quantifying linked 
fire effects on ETa and streamflow. Most have reported results at the 
annual timestep. 

Natural resource managers need to understand the scale(s) at which 
fire-induced hydrologic shifts become meaningful for source-water hy
drology. The current study seeks to address that need by evaluating 
statistical linkages between fire-induced ETa modification and stream
flow at varying spatiotemporal scales. We examine two primary research 
questions: a) How does wildfire modify monthly ETa, baseflow, and 
runoff at basins in the western United States? And b) To what degree are 
fire-induced streamflow shifts explained by the ETa shifts? Previously 
proposed procedures for separating the effects of landscape from climate 
drivers are implemented for annual time series evaluation and improved 
upon for sub-annual time series evaluation. 

2. Methods 

2.1. Overview 

Monthly 30-meter (m) ETa data were calculated at ten burned basins 
in the western United States with the Operational Simplified Surface 
Energy Balance (SSEBop) model (Senay, 2018; Senay et al., 2013). Daily 
streamflow data and static basin attributes were acquired at basin-scale 
resolution; additional meteorologic and landscape variables were 
extracted at 30-m pixel-scale resolution. Fire-induced ETa shifts were 
quantified with statistical tests that compared pre and post-fire monthly 
and yearly ETa in burned and unburned pixels; timing of significant ETa 
shifts were also identified with change point detection tests and 
compared to fire event dates. Because pixel-scale data were not available 
for streamflow, additional statistical methods were used to disentangle 
the effect of fire from climate on post-fire baseflow and runoff at both 
monthly and annual time steps. Relationships between fire-induced 
streamflow shifts, ETa and precipitation anomalies, annual water de
mand, and basin characteristics were explored. A conceptual overview 
of the study’s input data, data processing steps, statistical tests applied, 
statistical models constructed, and results is provided in Fig. 1. 
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2.2. Basin selection 

Study basins were selected using the following criteria: a) the basin 
was in the western United States (west of the 100th meridian); b) more 
than 5 % of the basin was burned by a wildfire in a single water year 
(October 1 through September 30) according to the Monitoring Trends 
in Burn Severity (MTBS) dataset (Eidenshink et al., 2007); c) no addi
tional burns comprising more than 2 % of the basin’s total drainage area 
occurred in the ten years before or after the water year of interest; d) 
daily United States Geological Survey (USGS) stream gage data were 
available at the basin outlet for the entire study period (one exception 
made); and e) the basin did not contain manmade hydraulic control 
structures capable of modifying the timing, rate, and/or volume of 
streamflow at the gage. 

Only eleven basins were identified in the western United States that 
met all five study criteria. Ten of them were included in the current 
study (Figs. 2A and 2B, Table 1) while southern California’s Devil 
Canyon was excluded due to its inclusion in a similar study (Kinoshita 
and Hogue, 2015). The other basin studied in Kinoshita and Hogue, 
2015, City Creek, was excluded from the current study because the 
majority of it burned twice in six years (2003 Old Fire, 1997 Hemlock 
Fire). The authors acknowledge that the relatively small number of 
study basins included in the current study limits the reach and appli
cability of our results to the entire western United States in general. 

Watershed boundaries were delineated in Streamstats (https://www. 

usgs.gov/mission-areas/water-resources/science/streamstats-strea 
mflow-statistics-and-spatial-analysis-tools). Burn perimeters were ob
tained from MTBS and clipped to basin extents where necessary. The 
percentage of burned contributing drainage area was calculated in 
ArcPro (version 2.9) and ranged from 6 to 88 %. In all but one water
shed, only one burn event (defined by MTBS event ID) was responsible 
for the total burned area in the basin during the water year of interest. 
The exception occurred in Oregon’s South Umpqua River basin during 
water year 2002, where five MTBS-mapped fires occurred to comprise 
23 % of the basin’s total drainage area. 

2.3. Data collection 

2.3.1. Ssebop evapotranspiration 
Monthly 30-m ETa was calculated at each basin for the 21-year study 

periods with the SSEBop model (5,284,834 pixels total). Inputs of 
Normalized Difference Vegetation Indices (NDVI), cloud masks, and 
land surface temperature (Ts) were retrieved from Landsat 7 and 8 
Collection 1 Tier 1 calibrated top-of-atmosphere (TOA) reflectance data 
in the Google Earth Engine (GEE) Data Catalog (https://developers. 
google.com/earth-engine/datasets/). Auxiliary data used in the model 
include GridMET reference ET (ETo) (Abatzoglou, 2013) and Daymet air 
temperature (Thornton et al., 2018). ETa was calculated by applying a 
thermal index approach to combine ETp with Ts ET fractions using pre- 
defined, seasonally dynamic boundary conditions unique to each pixel 

Fig. 1. Conceptual overview (flow chart) of general study methods. Items include the datasets downloaded (light grey boxes) and generated (dark grey boxes), data 
source information (purple font), processing/procedural steps undertaken (red font), statistical models constructed and statistical tests applied (green font), and the 
final study results (light blue boxes). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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for ‘cold/wet’ and hot/dry’ reference points (Bastiaanssen et al., 1998; 
Senay, 2018). 

The SSEBop model was implemented using the ‘openet-ssebop’ Py
thon module (github.com/openet) developed as part of the OpenET 
project (https://openetdata.org/). Data were processed on the GEE 
platform through the Python ‘ee’ client library (github.com/google 
/earthengine-api). Our final ETa datasets are available on USGS Scien
ceBase (https://www.sciencebase.gov/catalog/item/628e58f9d34ef70 
cdba3feda). 

We note that fine resolution (10 to 100-m) Landsat-based SSEBop 
ETa estimates have been generated for multiple studies (Dias Lopes 
et al., 2019; Senay et al., 2016; Sharma and Tare, 2018; Singh and Senay, 
2015). Comparison of Landsat-based ETa estimates with eddy covari
ance flux towers and water balance data have generally shown good 
agreement (R2 from 0.74 to 0.95 and Nash-Sutcliffe model efficiency 
(NSE) from 0.66 to 0.91) (Senay et al., 2016). Comparisons with ETa 

calculated by the Bowen ratio method had an R2 of 0.82 and root mean 
square error (RMSE) of 0.89 mm/day (Dias Lopes et al., 2019). 

2.3.2. Streamflow 
Daily streamflow data were obtained for each basin from the USGS 

National Water Information System (U.S. Geological Survey, 2021) for 
each 21-year study period (Table 1) with one exception (only eight years 
of post-fire data were available for Utah’s Porcupine Fire basin (https 
://waterdata.usgs.gov/nwis/uv/?site_no=09182400)). The Lyne- 
Hollick digital recursive filter was applied to separate baseflow from 
daily mean streamflow with the hydrostats R package and the alpha 
filtering parameter set to the default 0.975 value (Bond, 2021; Ladson 
et al., 2013). Runoff was calculated as the residual of the native daily 
mean flow rate and the calculated mean daily baseflow rate generated in 
the previous step. The daily baseflow and runoff time series were con
verted from flow rates (feet3/second, cfs) to depths (millimeters, mm) 

Fig. 2A. Location map of burned basins in western United States showing EPA Level III Ecoregions in index map (Omernik and Griffith, 2014). Bolded name is name 
of the fire event. NHD is the National Hydrologic Dataset showing flowlines. 
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using the drainage area of each basin and aggregated to monthly and 
yearly totals. 

2.3.3. Additional meteorologic and landscape variables 
Additional pixel-scale meteorologic and landscape variables were 

extracted at each study basin including pyrologic data (e.g., fire origin 
data, burn severity class), pre-fire vegetation type, topographic variables 
(elevation, slope), and pre-fire beetle infestation. Static and dynamic 
basin-scale data were compiled including the length of the shortest flow 
path between the burn scar and stream gage, average basin soil erod
ibility and rainfall erosivity, the average percent of precipitation that 
falls as snow, average depth to a restrictive subsurface layer, and 
monthly Standardized Precipitation Index (SPIs) rank. Full details of 
datasets and extraction and aggregation procedures are provided in SI 
Appendix A. 

2.4. Statistical analysis 

2.4.1. Quantifying the effect of fire on ETa and streamflow 
Since pixel-scale ETa flux was estimable from remotely sensed ob

servations, the effect of fire could be distinguished from climate in the 
ETa data by running separate statistical tests on burned and unburned 
pixels from the same basin and comparing results. For basins that 
experienced burns in only a portion of their drainage area, the damp
ening effect of scale (in terms of both overall basin size and the muting 
effect of unburned contributing drainage area on basin-scale data sum
maries) was also evaluated by repeating the same statistical tests on all 
pixels from the entire basin. 

Conversely, stream gage data were only available at main basin 
outlets as there were no nested monitoring stations in upgradient sub
basins. Thus the comparison procedures used to parse the effects of fire 
from climate and scale in ETa data were not applicable. To avoid the 
need for comparative analyses of streamflow data from nearby control 
(unburned) basins, two additional analyses were conducted on the 
streamflow time series that involved the removal of the climate signal 

from the streamflow record altogether (Fig. 1). 

2.4.1.1. Eta. At each basin, monthly ETa data were separated into 
groups of burned pixels, unburned pixels, and all pixels in the entire 
basin, and the monthly average of each group was calculated. Mann 
Kendall tests were applied with the Kendall R package (McLeod, 2011) to 
test for the presence of underlying trends in the ETa of the unburned 
pixels and in the climate variables. Following, attempts were made to 
make the data stationary (i.e., mean, variance, and autocorrelation 
structure are time invariant (Hyndman and Athanasopoulos, 2018; Milly 
et al., 2008; Shumway and Stoffer, 2016)). Data were log-transformed to 
stabilize fluctuations in variance and a seasonal first difference was 
taken to remove seasonal patterns (i.e., ‘deseason’ the data) (annual and 
monthly fluxes provided in SI Figure A and SI Figure B, example of 
deseasoning procedure provided in SI Figure C). To determine if outputs 
from the deseasoning procedure were seasonally stationary, autocorre
lation plots (ACFs) were visually inspected and Augmented Dickey- 
Fuller tests (ADF) were applied with the base CRAN tseries R package 
(Trapletti et al., 2021). The ADF is a unit root test, where a unit root is a 
non-stationary feature of a stochastic process that can interfere with the 
ability to make statistical inferences from a time series model. Inability 
to reject the null hypothesis (p > α, α = 0.05) indicated the series 
remained seasonally non-stationary (presence of a unit root) (Shumway 
and Stoffer, 2016). 

The deseasoned ETa data were indexed by period (ten-year pre-fire 
period, post-fire years one through five, and post-fire years six 
through ten). Non-parametric Wilcoxon rank sum tests were run on each 
of the ETa groups (burned pixels, unburned pixels, all pixels) to identify 
statistically significant shifts in either of the post-fire periods relative to 
the pre-fire period (α = 0.05). Non-parametric Pettitt’s change point 
detection tests were also applied to each time series with the trend R 
package (Pohlert, 2020) to independently check the timing of major 
behavioral shifts; dates of significant shifts (α = 0.05) were compared to 
fire event dates. Pettitt’s, based on Mann-Whitney-two-sample rank- 
based tests, detects a single change at an unknown point in time. It is 

Fig. 2B. Location map of burned basins in central-western United States. Bolded name is name of the fire event. NHD is the National Hydrologic Dataset 
showing flowlines. 
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Table 1 
Select basin and fire attributes. Total number of pixels (burned + unburned) included in analysis: 5,455,350. Total number of burned pixels included in analysis: 1,232,142. Drainage area obtained from USGS gaging 
station information (https://waterdata.usgs.gov) and cross-checked in ArcPro; ArcPro calculation governed. The shortest distance from the burn perimeter to the basin outlet (gaging station) was calculated using the 
National Hydrography Dataset in ArcPro. Percent of annual precipitation that falls as snow was obtained as a single value for each basin from the GAGESII dataset (https://water.usgs.gov/GIS/metadata/usgswrd/XML/g 
agesII_Sept2011.xml). Depth to any restrictive layer obtained from the NRCS WSS. Pyrologic information obtained from the MTBS database. Elevation ranges from Landfire dataset. Pre-fire dominant vegetation type (‘Pre- 
fire dom.veg.’ right-most column) is the mode of NLCD land cover class for the NLCD raster most recently preceding the fire origin date each fire at each timestep (available for years 2001, 2004, 2006, 2008, 2011, 2013, 
2016). No raster was available for the Unnamed fire before the burn event (fire occurred in 1996) however, a review of Google Earth aerial imagery suggests pre-fire vegetation type was grassland/herbaceous. Detailed 
information on data sources and extraction and processing procedures provided in SI Appendix A.  
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among the most widely used change point detection methods in 
hydroclimatological studies (Mallakpour and Villarini, 2016; Zhou 
et al., 2019). Results for each pixel group (burned, unburned, all pixels) 
were compared at each basin. 

2.4.1.2. Streamflow. The same procedures and tests applied to the ETa 
data were applied to ‘climate-unadjusted’ monthly meteorologic (pre
cipitation, air temperature, ETp, SPI) and streamflow (baseflow, runoff) 
data for continuity. Center of volume analysis was also conducted on the 
raw streamflow data (daily mean discharge depth) to test for post-fire 
shifts in streamflow timing. For each water year, the FlowScreen R 
package (Dierauer and Whitfield, 2019) was used to identify the cal
endar day that 25, 50, and 75 % of the total annual streamflow volume 
occurred. Pre and post-fire results were compared with Wilcoxon rank 
sum tests (α = 0.05). 

In addition, fire-induced shifts in monthly and annual ‘climate- 
adjusted’ baseflow and runoff data were quantified. Regression models 
were fit to annual meteorologic and discharge data and model residuals 
in the pre and post-fire periods were compared. Separately, monthly 
data were evaluated by fitting lagged linear regression models to 
monthly meteorologic and discharge data with a seasonal autoregressive 
integrated moving average (S-ARIMA) modeled-error term. Model re
siduals in the pre and post-fire periods were again compared. 

3. Multivariate regressions on annual time series 

Linear regression models were constructed to estimate annual pre- 
fire baseflow and runoff from meteorological predictor variables (total 
annual precipitation, maximum annual daily air temperature, total 
annual ETp, mean annual SPI ranking). To select the most robust model, 
regressions for all possible combinations of the four predictor variables 
were fitted to each response variable (baseflow, runoff). To ensure 
models made physical sense, any model with a negative precipitation 
regression coefficient was removed. The model with the lowest cumu
lative Akaike Information Criteria (AIC) and Bayesian Information 
Criteria (BIC) score was selected and model validity and accuracy were 
recorded with model adjusted R2. Because each annual regression model 
was constructed with relatively few data points, model residuals for the 
training data period (pre-fire) were visually inspected to determine if 
linear regression modeling assumptions were met, including with ‘re
siduals vs fitted’ plots for checking linear relationship assumptions, 
‘normal Q-Q’ plots for examining the distribution of residuals, ‘scale- 
location’ plots for checking the homogeneity of variance of the residuals 
(homoscedasticity), and ‘residuals vs leverage’ plots for identifying 
extreme values that may be influencing regression results (SI Figure E, SI 
Figure F) (STHDA, 2018). No model was constructed for baseflow at 
Porcupine Ranch because no statistically significant regression model 
was rendered during the model selection process. 

Linear annual ordinary least squares regression models were of the 
general form: 

yar = β0 + β1X1 + β2X2 +⋯βnXn +E (1)  

where yax denotes the predicted response variable (annual baseflow or 
runoff), β are regression coefficients, X are input features (predictor 
variables), and E are model residuals. 

Models were then applied to the entire pre and post-fire baseflow and 
runoff datasets. Assuming the influence of weather was now removed 
from each model’s residuals, the final output (E) was considered to 
represent the portion of the streamflow signal that land disturbance was 
accountable for. Comparisons of the residuals in the pre and post-fire 
periods were made with Wilcoxon rank sum tests. When a Wilcoxon 
rank sum test indicated a significant difference in post-fire residuals, the 
authors ensured that the magnitude of the post-fire residual exceeded 
the magnitude of the predictive model’s RMSE. 

4. Multivariate lagged regressions on monthly time series 

A similar procedure was used to construct regressions on monthly 
data (same predictor and response variables). To account for seasonal 
lag between meteorologic predictors and discharge, lagged predictor 
variables were allowed inclusion in the monthly regression models. This 
decision was based on the high percentage of precipitation that falls as 
snow in numerous study basins (Table 1) and the obvious lag between 
when the majority of precipitation falls and peak runoff occurs in most 
study basins (SI Figure D). When a predictor variable was significantly 
correlated with a response variable at multiple lag steps, each lagged 
version of the predictor was evaluated during the model selection pro
cedure. S-ARIMAs were then fit to the residuals of the lagged linear 
regression models to remove the explanatory power of any remaining 
internal autocorrelation (Box and Jenkins, 1976). No models were 
constructed for baseflow or runoff at Unnamed because no statistically 
significant regression models were rendered during the linear model 
selection process. 

Lagged linear monthly regression models were of the general form: 

ymx =β0 + β1X1(t− i(1)) + β1X1(t− i(n)) + β2X2(t− i(n)) +⋯βnXn(t− i(n))

+ (P,D,Q)(p, d, q)+E
(2)  

where ymx denotes the predicted response variable monthly baseflow or 
runoff), β are regression coefficients, X are input features (predictor 
variables), i is the timestep of the lag, P and p are the autoregressive 
model terms fitted to seasonal and non-seasonal portions of S-ARIMA 
models, respectively, D and d are the levels of differencing required for 
the seasonal and non-seasonal portions S-ARIMA models, respectively, Q 
and q are the moving average model terms fitted to the seasonal and 
non-seasonal portions of S-ARIMA models, respectively, and E are S- 
ARIMA model residuals. 

A detailed description of the lagged linear model selection procedure 
and S-ARIMA model parameterization procedure is provided in SI Ap
pendix B. A figure showing the lagged linear model, the linear model’s 
residuals, the S-ARIMA model, and the final S-ARIMA model’s residuals 
for Chippy Mill is provided in the supplemental information to aid 
conceptual understanding (SI Figure G). 

Assuming the influence of weather and any remaining internal 
autocorrelation was now removed from each model’s residuals, the final 
output (E) was considered to represent the portion of the streamflow 
signal that land disturbance was accountable for. To simplify interpre
tation, baseflow and runoff residuals were grouped by season (Winter =
December, January, February; Spring = March, April, May; Summer =
June, July, August; Fall = September, October, November). Pre and 
post-fire comparisons were made with Wilcoxon rank sum tests. When a 
Wilcoxon rank sum test indicated a significant difference in post-fire 
residuals, the authors ensured that the magnitude of the post-fire re
sidual exceeded the magnitude of the predictive model’s RMSE. 

4.0.1. Linking fire-attributed streamflow shifts to ETa 

Residuals from the annual linear regression models were used to 
explore statistical relationships between fire-induced streamflow shift 
and ETa. First, precipitation and ETa anomalies were calculated. For 
precipitation, the mean of the total annual precipitation for the entire 
21-year study period was subtracted from each year. For ETa, the mean 
of the total annual ETa in the unburned pixels was subtracted from the 
mean yearly ETa depth of all the pixels in the basin. To normalize the 
baseflow and runoff residuals, residual anomalies were also calculated 
by subtracting the mean of the pre-fire period residual from the 21-year 
residual time series. Baseflow and quickflow residuals were then sum
med to determine the magnitude of the total landscape-driven stream
flow each year. 

Pearson’s correlations between annual precipitation, ETa, and 
streamflow residual anomalies were calculated at each basin. The 
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anomaly with the stronger correlation was considered the dominant 
driver of the landscape-driven baseflow or streamflow shift. At-a-glance 
qualitative volume comparisons were also made by plotting the total 
mean annual fire-induced streamflow with the total mean annual pre
cipitation and ETa anomalies for each of the five-year post-fire periods. 

4.0.2. Relationships between basin characteristics and fire-attributed 
streamflow shifts 

The annual baseflow and runoff residuals were also used to explore 
statistical relationships between fire-induced streamflow shifts and 
various basin characteristics. This was the only analysis that considered 
data from all ten of the study basins together. 

To normalize data across basins, the percent difference in the mean 
post-fire baseflow and runoff residuals in the first five post-fire years was 
calculated for each basin (data from post-fire years six through ten were 
excluded under the assumption that watershed rehabilitation or recov
ery would be actively underway by the sixth post-fire year). Pearson’s 
correlation was calculated between the basin attributes (e.g., the percent 
of each basin burned, percent of basin burned at high severity, total 

drainage area, and others) and the fire-induced streamflow percent 
shifts (α = 0.10 due to small sample size). 

5. Results 

5.1. Fire-induced ETa shifts 

One basin exhibited moderate evidence (p less than 0.05) of a long- 
term trend in monthly precipitation (Waterfall), one in PET (Ponil 
Complex), three in SPI (Cannon, Ponil Complex, Waterfall), and two in 
the ETa of the unburned pixels (Unnamed, Waterfall) according to Mann 
Kendal trend tests (SI Table A). However, every time series had visually 
obvious seasonal patterns (SI Figure B, SI Figure C) and failed ADF tests 
(p > α, where α = 0.05) when ADF tests were run on raw datasets (prior 
to the deseasoning procedure). ADF tests indicated that a deseasoning 
procedure rendered all datasets stationary (SI Table B). The burned- 
pixel and aggregate basin-scale ETa, baseflow, and runoff datasets 
were similarly deseasoned, and only the deseasoned baseflow data at 
Cannon, Ponil Complex, Porcupine Ranch, and Unnamed basins failed 
the ADF stationarity tests (Fig. 2A and 2B). 

Fig. 3. Boxplots of % change in annual precipitation (A), ETa (B), and the difference (residual) in the ETa of burned and unburned pixels (C) at each basin during the 
first five and second five post-fire years relative to the pre-fire period (ten years preceding fire). The ten study basins (y-axis) are presented in ascending order of the 
mean percent change in annual precipitation during the entire post-fire period (post-fire years one through ten) (panel A). The middle panel (panel B) shows shifts in 
the ETa of burned pixels, unburned pixels, and all pixels within the basin. Significant differences in monthly deseasoned, log-transformed time series in each post-fire 
period (relative to the pre-fire period) were evaluated with Wilcoxon Rank Sum tests (significance indicated with a yellow dot, α = 0.05; deseasoned datasets were 
not normally distributed according to Shapiro-Wilk normality tests). Dates of significant shifts in the monthly deseasoned data were evaluated with Pettitt’s change 
point detection tests, where a dataset with a significant shift within two months of the fire origin date is indicated with a purple star (α = 0.05). Chippy (Mill) and 
Santiago are highlighted because they were the only basins that experienced significant shifts in ETa within two months of the fire at both the burn scar (burned 
pixels) and basin scales (all pixels in basin) according to Pettitt’s tests. Boxplot center bars indicate median, boxplot hinges are 25th and 75th percentiles, and 
whiskers are the largest values less than 1.5*IQR (interquartile range) ± each hinge. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Precipitation during the first five post-fire years was only signifi
cantly different (lower) from the pre-fire period at Waterfall according 
to Wilcoxon rank sum tests (Fig. 3). However, ETa was significantly 
reduced within most burn scars (burned pixels) in the first five post-fire 
years (percent annual reductions between approximately ten to 50 %), 
and in a smaller fraction of burn scars during post-fire years six through 
ten (likely due to vegetation recovery). The Unnamed fire was the only 
basin to experience no significant change in post-fire ETa at the burned 
pixels; this was also the only fire with grassland/herbaceous cover as its 
dominant pre-fire vegetation type (Table 1). Post-fire ETa residuals (ETa 
of burned and unburned pixels, differenced) were significantly reduced 
in every basin during both post-fire periods except at Unnamed (dif
ferencing was not performed for Chippy Mill due to its relatively small 
number of unburned pixels) (Fig. 3C, Fig. 4). Statistically significant 

post-fire shifts also occurred in baseflow and runoff at numerous basins 
(Fig. 5), however, the shifts could not be specifically attributed to fire 
because the influence of climate could not be removed from the gage 
data. According to the center of volume analysis, the only basin to 
experience a significant shift in streamflow timing was Chippy Thomas; 
25 % of the annual total streamflow volume occurred 21 days later in the 
first post-fire period. It is not clear whether the shift was caused by land 
disturbance or post-fire weather as the center of volume analysis was 
conducted on climate-unadjusted data. 

No shifts were detected (p > α) in the climate variables (SI Table C) 
or the ETa of the unburned pixels (Fig. 3B) within six months of a fire 
origin date according to Pettitt’s change point detection tests. 
Conversely, Pettitt’s identified significant shifts in the ETa of the burned 
pixels within two months of fire origin dates in four of the ten basins 

Fig. 4. Post-fire annual evaporation ratio (ET/P) shifts in the first (A) and tenth (B) post-fire years, and monthly ETa through time (C), at the West Walker River 
Basin, California, following the 2002 Cannon Fire. Panels A and B: ET/P percent shifts are the percent shift in the annual evaporation ratio at each pixel relative to 
each pixel’s ten-year pre-fire evaporation ratio. Reductions in the post-fire ratio (relative to the pre-fire) shown in red-scale, increases are shown in blue-scale. 
Approximate location of the USGS stream gage is indicated with a blue dot. Panel C: The mean monthly ETa depth through time for all unburned pixels in the 
basin (blue line), all burned pixels in the basin (red line), and the difference between the burned and unburned pixels (pink line, with an obvious reduction occurring 
following the fire event). Approximate date of the fire is indicated with a vertical black line. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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(Chippy Thomas, Chippy Mill, Porcupine Ranch, Santiago) and within 
five months of fire origin dates for three additional basins (Cannon, 
Jungle, Waterfall). Significant shifts occurred in the ETa residuals of 
those same seven basins within two months of fire origin dates (Fig. 3C, 
SI Table C). Comparison of the burned pixel and ‘all pixel’ ETa Pettitt’s 
results provides insight into the effect of scale: significant shifts in the 
ETa of all basin pixels were only identified within two months of fire 
origin dates at the two basins with the highest percentages of burned 
drainage area (Chippy Mill – 88 %, Santiago – 73 %) (Fig. 3B). Chippy 
Mill was the only basin to experience significant baseflow and runoff 
shifts during the water year following the fire (Fig. 5). 

5.2. Fire-induced streamflow shifts 

5.2.1. Annual shifts 
Based on comparisons of pre and post-fire residuals from the annual 

regression models, statistically significant fire-induced increases in 
baseflow were identified at Chippy Mill (68 % increase from pre-fire 
annual baseflow, or approximately 30-mm/year) and Unnamed (53 % 
increase, approximately 5-mm/year) (Fig. 6A) during the first five post- 
fire years (detailed model metrics provided in SI Table D). Of the three 
basins with statistically significant increases in baseflow during post-fire 
years one through five, significant increases only persisted into post-fire 

years six through ten at Chippy Mill (Fig. 6B). Statistically significant 
immediate increases in annual runoff were identified at Cannon (8 % 
increase, approximately 25-mm/year) and Chippy Mill (99 % increase, 
approximately 95-mm/year). That increase only persisted at Chippy Mill 
(92 % increase) during the second post-fire period (Fig. 6B). 

During the first five post-fire years, wildfire increased average 
annual flow by 6 % Cannon, 43 % at Chippy Mill, 2 % at Jungle, 23 % at 
Ponil Complex, and 8 % at Waterfall (red text in Fig. 6). Wildfire 
decreased flows by 1 % at Boulder, 87 % at Santiago, and 9 % at Un
named. These changes are likely within the range of pre-fire interannual 
streamflow variability where comparisons of pre and post-fire model 
residuals were insignificant (absence of a yellow dot in Fig. 6). 

5.2.2. Seasonal shifts 
Analysis of annual hydrologic data did not capture the most dramatic 

and seasonally acute fire-induced streamflow shifts. Nearly every basin 
experienced increased mean and median baseflow and runoff in some 
seasons and decreases in others (Fig. 7) (detailed model metrics pro
vided in SI Table E). We observe that the seasonal timing of fire-induced 
baseflow increases and decreases did not have a consistent temporal 
relationship with seasonal precipitation across basins. For example, at 
Chippy Mill and Cannon, which receive 43 and 72 % of their annual 
average precipitation as snow, respectively (Table 1), fire increased 

Fig. 5. Boxplots of % change in annual baseflow (A) and runoff (B) at each basin during the first five and second five post-fire years relative to the pre-fire period (ten 
years preceding fire. The ten study basins (y-axis) are presented in the same order used in Fig. 3. Significant differences in monthly deseasoned, log-transformed time 
series in each post-fire period (relative to the pre-fire period) were evaluated with Wilcoxon Rank Sum tests (significance indicated with a yellow dot, α = 0.05). 
Dates of significant shifts in the monthly deseasoned data were evaluated with Pettitt’s change point detection tests, where a dataset with a significant shift within 
two months of the fire origin date is indicated with a purple star (α = 0.05). Chippy (Mill) is highlighted because it was the only basin that experienced a significant 
shift in baseflow and/or runoff during the water year proceeding the year of the fire according to Pettitt’s tests. Boxplot center bars indicate median, boxplot hinges 
are 25th and 75th percentiles, and whiskers are the largest values less than 1.5*IQR ± each hinge. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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baseflow during wet months (mean monthly hydrologic fluxes provided 
in SI Figure D)). The opposite occurred at Oregon’s Boulder fire (20 % of 
annual precipitation falls as snow), where baseflow increased during the 
dry summer and fall months and decreased during the wetter winter and 
spring months. The Oregon results were in agreement with Bart and 
Tague (2017)’s observations of burn scars in central and southern Cal
ifornia (where similarly low to no persistent winter snow accumulates), 
where lower post-fire groundwater ETa losses likely caused baseflow to 
increase during the dry months. While the effect of forest disturbance on 
snowpack is influenced by numerous factors, vegetation removal and 
fire-induced radiative forcing have generally been shown to advance the 
date of snow disappearance by increasing snowmelt rates (Gleason et al., 
2013; Gleason and Nolin, 2016; Pomeroy et al., 2012; Pugh and Gordon, 
2013; Skiles and Painter, 2015). Earlier post-fire snowmelt may have 
contributed to decreased baseflows during the drier summer months at 
Chippy Mill and Cannon. 

Only Chippy Mill experienced statistically significant, seasonally 
opposed baseflow shifts (increases in some seasons, decreases in others) 
during the first five post-fire years, (49 % increase in spring, or 
approximately 3-mm/month;17 % decrease during fall, approximately 
2-mm/month). This may be because fire-induced baseflow increases 
overlapped with the peak precipitation season in most basins (when 
precipitation likely varies the most during any given water year). This is 
further supported by the observation that at many basins, wet season 
precipitation variability was high between water years (SI Figure A), 
which increased the variability of the landscape-driven baseflow re
siduals for the wetter months during the pre-fire period. Therefore, at 

most basins, fire-driven baseflow increases (typically occurring in the 
wetter months) were less likely to be statistically insignificant compared 
to baseflow reductions (which often occurred during the drier months, 
when interannual precipitation variability was lower). 

The same pattern was observed in the runoff results: only Chippy Mill 
experienced statistically significant, seasonally opposed runoff shifts 
during the first five post-fire years. Numerous additional basins expe
rienced statistically significant shifts in runoff during the first five post- 
fire years in at least one season (Boulder: reductions in winter and 
summer; Cannon: increases in fall; Chippy Thomas: decreases in winter; 
Jungle: increases in winter; Ponil Complex: increases in winter and 
spring; Santiago: decreases in summer) (Fig. 7B). Only Chippy Mill (88 
% burned) and Santiago (73 % burned) experienced significant runoff 
shifts during the second post-fire period (Fig. 7C and D). 

5.3. Linking fire-attributed streamflow shifts to ETa 

Chippy Mill was the only basin whose fire-induced streamflow shifts 
were well-explained by ETa (R2 = -0.79) (Fig. 8). Shifts were also 
significantly correlated with the precipitation anomaly, but to a lesser 
extent (R2 = 0.14). Also at Chippy Mill, qualitative comparisons of total 
annual fire-induced streamflow depth (turquoise boxplots) to the depth 
of water expected from basin-scale ETa anomaly (green boxplots) and 
precipitation anomaly (blue boxplots) shows that the ETa anomaly was 
nearly equivalent (opposite) in magnitude to the fire-induced annual 
streamflow depth during each of the post-fire periods (Fig. 6). 
Conversely, the depth of excess water provided by the precipitation 

Fig. 6. Fire-induced yearly baseflow (white boxes) and runoff shifts (pink boxes) with precipitation (dark blue boxes), ETa anomalies (green boxes), and total annual 
observed streamflow (grey boxes) during the first five (A) and second five (B) post-fire years. The ‘fire-induced’ shifts are the residuals from the annual regression 
analysis (discussed in section 3.2.1). Significant shifts in the residuals of the post-fire period, relative to the residuals of the pre-fire period, were evaluated with 
Wilcoxon rank sum tests (significance indicated with a yellow dot, α = 0.10). The black text above or below a yellow dot is the ratio of the post-fire residual to the 
average annual pre-fire observed baseflow or runoff. For example, in panel A, fire significantly increased runoff at the Cannon Fire by 8 % relative to the mean annual 
volume of pre-fire runoff. In addition, to enable at-a-glance comparisons of the amount of water made available from yearly precipitation and ETa anomalies to the 
amount of fire-boosted streamflow, the total fire-induced streamflow (sum of the annual baseflow and runoff residual) is plotted as turquoise boxes next to the 
magnitude of the precipitation and ETa anomalies; note that the ETa anomaly was multiplied by − 1 to aid comparison. The ratio of the mean annual fire-induced 
streamflow (baseflow plus runoff residual) to the mean annual observed total post-fire streamflow is provided in red and plotted with a red dot (corresponding to the 
right y-axis). For example, at the Cannon Fire, fire-induced streamflow comprised 6 % of the total annual streamflow observed at the gage in the post-fire period. 
Boxplot center bars indicate median, boxplot hinges are 25th and 75th percentiles, and whiskers are the largest values less than 1.5*IQR ± each hinge. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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anomaly was insufficient to account for the total annual fire-induced 
streamflow depth. This further supports our hypothesis that much of 
Chippy Mill’s post-fire boosted streamflow was surplus water generated 
by fire-induced ETa reduction. 

Although ETa reductions occurred at most of the other burn scars 
(Figs. 3 and 6), landscape-driven streamflow could not be statistically 
linked to the ETa or precipitation signal. This may indicate that where 
fire caused streamflow to increase, other fire-modified landscape pro
cesses also contributed to increased precipitation-runoff partitioning (e. 
g., reduced infiltration (DeBano et al., 1998)). Further explanation may 
be provided by plots of annual evaporation ratios and aridity indices (SI 
Figure H): every watershed was water-limited during most years except 
Oregon’s Boulder basin, meaning some or all of the excess water 
generated from ETa reduction could have been consumed by various 
compensation pathways, such as through compensatory transpiration 
losses by intact hillslope and riparian vegetation within and downstream 
of the burn scar (Tague et al., 2019). This hypothesis highlights the 
potential importance of unburned drainage area positioned between the 
disturbance footprint and the basin outlet (discussed below) or un
burned riparian vegetation within the burn scar. In addition, our data 
show that some basins had evaporation ratios greater than 1.0 during 
multiple years, suggesting that ETa fluxes may be supported by 

additional inputs of water beyond precipitation (e.g., deep groundwater 
reserves) (Sun et al., 2019; Vourlitis et al., 2008). We also note that 
many basins have lower interannual ETa variability than precipitation 
variability, indicating that ETa water sources are appreciably distinct in 
space and time from streamflow water sources (i.e., hydraulically 
disconnected at timescales relevant to interannual ETa flux) (SI 
Figure A). Further studies are needed to determine how wildfire mod
ifies runoff generation processes in different lithologic typologies. 

5.4. Relationships between basin characteristics and fire-attributed 
streamflow shifts 

Numerous Pearson’s correlations greater than 0.20 were calculated 
between fire-induced baseflow and runoff shifts and select basin attri
butes (Table 2). Likely due to small sample size, only correlations greater 
than or equal to 0.58 were statistically significant. 

Greater amounts of burned area, area burned at high severity, and 
the percent of a basin impacted by beetles prior to fire significantly 
correlated with fire-induced runoff increases. The percent of total pre
cipitation that falls as snow, slope, and depth to a restrictive layer also 
correlated positively with fire-induced increases in runoff, although not 
statistically significantly. The average annual aridity index was 

Fig. 7. Fire-induced monthly baseflow and runoff shifts during the first five (A, B) and second five (C, D) post-fire years. Each boxplot represents five data points, 
where a data point is the difference in the mean of the residual for all three months in the season relative to the mean of the residuals from the same three months for 
the entire ten-year pre-fire period. Significant shifts in the residuals of the post-fire period, relative to the residuals of the pre-fire period, were evaluated with 
Wilcoxon rank sum tests (significance indicated with a yellow dot, α = 0.10). For example, during spring at Chippy Mill, wildfire increased runoff by 60 % in the first 
five post-fire years (panel B). Boxplot center bars indicate median, red dots indicate mean, boxplot hinges are 25th and 75th percentiles, and whiskers are the largest 
values less than 1.5*IQR ± each hinge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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significantly positively correlated with fire-induced baseflow increases; 
slope was significantly negatively correlated with fire-induced baseflow 
increases. 

6. Discussion 

6.1. Identifying ETa-induced streamflow modification following wildfire 
disturbance at the gage 

Only when at least 73 % of a basin burned in a single water year was 
moderate evidence present of fire-induced ETa shifts (p less than 0.05, 
Wilcoxon rank sum tests) in basin-scale ETa data summaries (Fig. 3). 
Downstream, only where basin-scale ETa was significantly altered 
within two months of the fire were fire-induced streamflow shifts 
distinguishable at the gage without prior removal of the climate signal 
according to Pettitt’s tests (Chippy Mill, 88 % burned, Fig. 5). These 
findings highlight the importance of disturbance scale and are further 
bolstered by strong correlations between the magnitude of fire-induced 
runoff shifts and the percentage of total burned contributing drainage 
area (Table 2). Previous work confirms the sensitivity of streamflow to 
the fraction of drainage area disturbed (Hallema et al., 2018; Saxe et al., 
2018; Williams et al., 2022; Wine et al., 2018). 

We show that the amount of fire-induced runoff generated from the 
Chippy Mill burn scar (the basin with the highest percentage of 
disturbed contributing drainage area) was proportionate to the depth of 
water made available by fire-induced ETa reduction (Fig. 6). This sug
gests that, where the majority of a basin is disturbed, inferences can be 

made about post-fire runoff response from pixel-scale ETa data. How
ever, mixed results from the other nine basins suggest the following five 
points be considered when using basin-scale data in change detection 
analysis: 

First, if basin-scale data (e.g., stream gage data) are expected to relay 
the story of landscape disturbance, the tendency for post-fire climate to 
mask or artificially exaggerate the effect of landscape disturbance in the 
basin-scale dataset should be accounted for. Only where nearly the 
entire basin burned (Chippy Mill) were fire-induced streamflow shifts 
extreme enough to be identified with climate-unadjusted statistical 
methods (Pettitt’s tests on deseasoned monthly data). In the other basins 
included in this study, climate-unadjusted streamflow followed the 
declining precipitation pattern (Figs. 3A, 5). This supports Jaramillo and 
Destouni (2014)’s observation that landscape drivers often cause hy
drologic processes to shift in a direction opposite to those imposed by 
atmospheric climate drivers. Hallema et al. (2018) confirmed it when 
they observed a net decline in post-fire streamflow following reduced 
post-fire precipitation in southern and central California. Blöschl et al. 
(2007) tied this concept back to total basin size when they observed that 
large-scale climatic patterns dominate the hydrologic response of large 
watersheds more so than in small watersheds, thus the effects of wildfire 
disturbance are more likely undetectable in comparatively large basins 
(Blöschl et al., 2007). 

Second, because fire-induced streamflow shifts were seasonally 
variable (Fig. 7), even climate-adjusted procedures are liable to miss the 
most acute effects of fire when data are aggregated to the annual 
timestep because the effects of the disturbance may be averaged out. Our 

Fig. 7. (continued). 
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finding supports Aredo et al. (2021) process-based modeling study of the 
effects of land use/land cover change on seasonal discharge in Ethiopia: 
mean monthly streamflow decreased during dry months and increased 
during wet months following conversion of forested and bushland areas 
to urban and agricultural land uses (Aredo et al., 2021). 

Third, our lagged monthly regression residuals still loosely tracked 
meteorology in the post-fire period. This may partially explain why post- 
fire shifts were frequently insignificant when results were aggregated 
into five-year blocks – the magnitude, and for some basins the direction, 
of the fire-induced streamflow shifts varied from year to year (Figs. 6 
and 7). The Chippy Thomas basin (15 % burned by a fire in 2007) il
lustrates the point well: annual fire-attributed streamflow shifts were 
plotted with precipitation anomaly, ETa anomaly, and the status of each 
year’s annual SPI ranking (above, within, or below the 95 % confidence 
interval (CI) of the entire 21-year SPI median score) (Fig. 9). At the 
annual timestep, the direction of ‘fire-induced’ baseflow and runoff 
shifts still generally followed the direction of the precipitation anomaly; 
it was not until the fourth post-fire year (2011) that the fire-induced 
portion of the total annual streamflow depth became substantially 
elevated – the same year the basin received above-average precipitation 

for the first time since the fire year (per SPI rank). Overall, this suggests 
that even if a robust statistical method is used to remove climate from 
the streamflow record, the nuanced effects of multi-year drought or 
wetness on runoff generation processes are not well-accounted for; there 
may be a ‘catchment memory’ of drought. For example, it has been 
shown that ‘drought history’ is more important than real-time ante
cedent soil moisture status for infiltration and water repellency behavior 
in forested areas (Gimbel et al., 2016). 

Fourth, the assumption that our procedures isolated fire-induced 
streamflow shifts specifically introduced uncertainty. Numerous addi
tional landscape drivers are capable of modifying watershed hydrology 
such as insect infestation, disease, drought-induced vegetation mortal
ity, and anthropogenic activities such as land cover conversion and 
water extraction from surface or groundwater reservoirs (Jaramillo and 
Destouni, 2014; Xu et al., 2014). We attempted to limit that uncertainty 
by selecting relatively unpopulated basins with natural flow regimes 
(Wine and Cadol, 2016). Regarding our attempt to link fire-induced 
streamflow shifts to ETa reduction specifically, we acknowledge that 
combustion modifies myriad hydrogeomorphological processes, only 
some of them participatory in ETa regulation. For example, some studies 
have observed fire-induced soil infiltration impedance to be a dominant 
driver of post-fire runoff generation at plot and hillslope scales (Balfour 
et al., 2014; Ebel et al., 2012). Event-specific storm characteristics and 
initial soil–water saturation deficit have also been shown to modulate 
peak runoff rates in fire-affected soils (Moody and Ebel, 2014). Fire- 
exacerbated geomorphological processes (debris flows, dry raveling, 
etc.) also likely alter runoff routing parameters (e.g., hillslope, flood
plain, and channel surface roughness; side-channel storage) (de Haas 
et al., 2014; Florsheim et al., 2016). We verified that fire reduced ETa 
before assuming ETa played a role in what occurred at the gage but admit 
that some or all aforementioned processes also likely contributed to the 
expression of landscape disturbance in the streamflow record. See also 
(Kirchner et al., 2020) for further discussion of ETa’s controlling role in 
streamflow response following forest density reduction. 

Finally, our results suggest that the period length streamflow data 
are aggregated to may partially determine the disturbance percentage 
threshold necessary to confer a detectable shift in gage data. Perhaps in 
part due to our consideration of all seasons, the current work identified 
significant fire-induced streamflow shifts in basins with as little as 6 % 
burned contributing drainage area. In contrast, Hallema et al. (2018) 
and Wine and Cadol (2016) procedures detected fire-induced annual or 
monsoonal runoff increases in basins with at least 19 % burned drainage 
area. Future work could explicitly quantify streamflow’s elasticity to 
fire-induced ETa modification (Hallema et al., 2018; Kurzweil et al., 
2021). 

6.2. Watershed factors promoting fire-induced streamflow shifts 

Results from the current study support prior observations that the 
percentage of total burned and high burn severity drainage area controls 
the magnitude and direction of the streamflow modification (Blöschl 
et al., 2007; Neary et al., 2005; Saxe et al., 2018; Williams et al., 2022; 
Wine and Cadol, 2016). For one, high burn severity has been shown to 
reduce ETa more dramatically and for longer durations (Collar et al., 
2021; Ma et al., 2020; Nolan et al., 2014; Poon and Kinoshita, 2018). 
More high burn severity area also decreases the chances for compen
satory increases in transpiration or evaporation from the soil, the un
derstory, or neighboring or downgradient vegetation (Tague et al., 
2019). Similarly, less unburned drainage area reduces the opportunities 
for intact, downgradient vegetation to consume excess water generated 
by the upslope ETa reduction (Goeking and Tarboton, 2020; Tague et al., 
2019). The fraction of burned drainage area may have also been a proxy 
for watershed size in our data, as larger watersheds are at decreased risk 
of experiencing synchronous, basin-wide, stand-replacing disturbance. 
And due to rainfall’s inherent spatial variability, the percentage of a 
watershed’s area that is likely to generate runoff at any given time is 

Fig. 8. Pearson’s correlation of annual precipitation (Ppt) and ETa anomalies 
with the portion of annual streamflow not explained by meteorologic variables 
at Chippy Mill in the pre-fire (block dots) and post-fire (red dots) periods. The 
precipitation anomaly (TOP) is the deviation from the 21-year average annual 
precipitation, the ETa anomaly (BOTTOM) is the deviation of all the pixels in 
the basin from the 21-year average of annual ETa in unburned pixels only. 
Correlations were calculated at all ten study basins but were only significant (α 
= 0.10) at Chippy Mill (results from other basins not pictured). Correlations 
between streamflow residuals and ETa anomaly of the burned pixels were also 
calculated (not pictured) but Chippy Mill remained the only basin with sig
nificant results. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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inversely related to its size (Brunkal and Santi, 2017). Finally, the spe
cific effect of any one particular perturbance is difficult to verify at large 
spatial scales because of the long time lag between cause and effect 
(Blöschl et al., 2007). 

The lateral distance from the gaging station to the closest burn 
perimeter was not significantly correlated with fire-induced baseflow or 
quickflow (Table 2). These results do not support the prior observation 
that the position of a disturbance in the landscape matters (Blöschl et al., 

2007) as longer channel lengths increase the opportunity for peak flow 
attenuation (Brunkal and Santi, 2017; Ffolliott et al., 2013; Mueller 
et al., 2010). However, our results do not deliver strong evidence to the 
contrary given the relatively small sample size and annual timestep of 
our data and the variability in disturbance severity across the ten study 
basins. It is also reasonable to assume that opportunities for down
gradient compensatory ETa losses are fewer as the area between the 
disturbance and the basin outlet gets smaller (Tague et al., 2019). 

Table 2 
Pearson’s correlation between select basin attributes and the fire-attributed percent shift in baseflow and runoff (according to the annual regression method discussed 
in section 3.2.1). Blank cell indicates a correlation coefficient smaller than ± 0.20. Statistically significant correlations (α = 0.10) are underlined.  

Fig. 9. Annual precipitation (Ppt), ETa, Standardized Precipitation Index (SPI) anomalies, and fire-induced baseflow and runoff at Chippy Thomas and Chippy Mill. 
The SPI symbol provided in legend indicates if the annual SPI score was above, within, or below the 95% CI of the entire 21-year mean SPI score for the basin. SPI 
score is divided by ten for plotting purposes (right y-axis). Fire year indicated with red dashed vertical line. 
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6.3. Implications for surface water resources 

We studied a range of spatiotemporal scales to determine when fire- 
induced hydromodification becomes relevant to source-water hydrolo
gy. However, we appreciate Bloschl et al. (2007)’s cogent reminder that 
the spatial scale at which land cover change can impact overall basin 
hydrology depends on the hydrologic setting. Our paucity of replicates 
and the relatively sparse number of hydrologic settings evaluated limits 
our ability to issue broad, general statements about the western United 
States from the current work. Future efforts could increase the number 
or study basins by installing temporary pressure transducers where data 
are desired but no USGS gaging stations exist. For example, see Lund
quist et al., 2005′s nested monitoring approach in the Tuolumne River 
basin. 

In basins with unburned adjacent or downgradient drainage area, 
our results suggest that compensation pathways may have consumed 
some or all of the excess water generated by ETa reductions. Literature 
suggests that the seasonal droughts typical of semi-arid and Mediterra
nean climate regimes, where ETa is often water versus energy-limited 
during peak ETa months, are likely to enhance the conditions that 
support these compensation pathways (Tague et al., 2019). The authors 
acknowledge that we were unable to compare our results with energy- 
limited basins as our study areas were generally water-limited (SI 
Figure H). For now, previous publications can be visited for regional- 
scale statements about the effects of wildfire on streamflow (Beyene 
et al., 2021; Hallema et al., 2018; Saxe et al., 2018; Williams et al., 
2022). For example, Hallema et al. (2018) found that wildfire boosted 
annual discharge at study sites in the Pacific Northwest, Texas-Gulf, and 
lower Colorado regions, while the southeastern United States and areas 
treated with prescribed fire were relatively unaffected. 

We do show that where the majority of the drainage area was un
burned, the magnitude of fire-induced hydromodification was often 
within the range of pre-fire interannual streamflow variability (Figs. 6 
and 7) or was relatively transient. This may suggest that water providers 
with large, diverse water supply portfolios are insulated from post-fire 
water budget modification. Conversely, water providers with small 
source-water collection areas are at greater risk because they are more 
likely to experience disturbance in a larger fraction of their collection 
area. Thus, pre-fire management strategies that reduce the risk of 
moderate to high burn severity, expand source-water area, or diversify 
water supply portfolios may be most important for small-scale water 
providers. In addition, where climatic and fuel conditions favor fire and 
multiple ignition sources are present, land managers should consider the 
additive effect of multiple fire events (Wine and Cadol, 2016). 

7. Conclusions 

We evaluated whether fire-induced streamflow shifts were caused by 
changes in burn scar ETa at ten basins in the western United States. Fine 
resolution ETa was estimated with the SSEBop model at burned and 
unburned 30-m pixels, which allowed for the effects of climate to be 
easily separated from landscape disturbance in ETa time series. Fire 
reduced ETa through the tenth post-fire year at 80 % of the studied burn 
scars (Fig. 3), however, those reductions were only propagated up to the 
basin scale when at least 73 % of the basin’s drainage area burned in a 
single water year. Only then were fire-induced streamflow shifts 
detected in climate-unadjusted streamflow data (Fig. 5). 

To remove the influence of climate from the streamflow data, pre
viously proposed methods were used to process annual data and 
improved upon for monthly data. Fire-induced baseflow and runoff 
shifts were detected at a basin with as little as 6 % burned drainage area 
(Fig. 7), representing a substantial improvement in the sensitivity of 
statistical methods to detect landscape-driven streamflow shifts than 
what was previously available in the literature. A potential explanation 
may be the fact that most change detection work is conducted on annual 
time series, yet the effect of fire disturbance on streamflow magnitude is 

seasonally variable (Fig. 7). This suggests that the effects of land 
disturbance on watershed hydrology may be partially averaged out in 
annual datasets. However, even in the climate-adjusted streamflow data, 
fire-induced streamflow shifts were generally insignificant or short-lived 
(did not persist past the fifth post-fire year) (Fig. 7C and D) where burn 
scar ETa reductions were not propagated up to the basin scale. 

Despite fire-induced ETa reductions at most burn scars, post-fire ETa 
anomalies were only significantly correlated with fire-induced stream
flow shifts at the basin with the highest percentage of disturbed drainage 
area (Chippy Mill, 88 %) (Fig. 8). This may indicate that other fire- 
modified physical processes contributed to the increased post-fire 
streamflow observed elsewhere (Fig. 6). Where fire reduced burn-scar 
ETa but did not increase streamflow, our results support prior findings 
that in water-limited systems, compensation pathways may develop in 
adjacent or downgradient undisturbed or low burn severity areas that 
consume the excess water yielded from ETa reduction. 

Overall, findings suggest that water providers with large source- 
water collection areas are fairly immune to disturbance-induced shifts 
in basin water yield because they are less likely to experience distur
bance in substantial portions of their collection area. For the same 
reason, providers with relatively small source-water areas are at higher 
risk and should therefore consider management strategies that reduce 
the likelihood of high severity disturbances or that expand or diversify 
water supply portfolios. Results from this study would be bolstered by in 
situ field observations and process-based modeling studies of the me
chanics behind fire-modified precipitation partitioning and runoff 
routing. The need for additional research into the role of groundwater 
storage in the post-fire water budget is also highlighted. 
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