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ABSTRACT

Evapotranspiration (ET) accounts for a substantial portion of regional water budgets in much of the southeast
and fire-prone western United States (US). Even small changes in ET rates can translate to meaningful shifts in
runoff patterns and makes forecasting the direction and magnitude of wildfire-induced ET alteration of critical
importance. We use 1 km ET estimates from the operational Simplified Surface Energy Balance (SSEBop) product
for the conterminous US (CONUS) to evaluate post-fire ET and evaporation ratio (ET/P) shifts in the first five
post-fire years in approximately 5500 unique fires. Pixels with similar ET/P responses to fire are grouped through
k-means clustering and the resultant cluster distribution is explored over space and time. The largest changes in
post-fire ET/P are observed in the southwestern CONUS where first-year ratios are reduced by 50 to 90% and pre-
fire ratios are rarely recovered by post-fire year five. Regional and intra-fire ET/P response variability is also
highest in the western CONUS where climatic, topographic, and ecologic gradients are steep. Post-fire ET/P
modifications are small to negligible in the east-southeast CONUS, and 18% of all pixels analyzed exhibit small to
moderate increases in post-fire year one ET/P. A comparison of burned and unburned pixel pairs confirms the
role of fire in the shifts but also indicates a high degree of background variability in the ET and precipitation
data. Although the biggest percent ET/P reductions occur in shrub/scrub landscapes in much of the west, the
biggest magnitude ET changes often occur in evergreen forests. Higher burn severities are consistently correlated
with greater post-fire ET/P reductions, while relationships between post-fire ET/P shifts and numerous other
landscape attributes (e.g., pre-fire vegetation type) vary in both direction and magnitude in different parts of the
CONUS. Further work can be conducted to refine controlling relationships within more homogeneous sub-
regions.

1. Introduction

Fire impacts the response of a landscape to precipitation by altering
processes that partition water in the environment (DeBano et al., 1998).
Evapotranspiration (ET), the component of the water budget most sen-
sitive to vegetation changes (DeBano et al., 1998), can shift in direction
and magnitude following fire-induced modifications to surface cover,

the physical and chemical composition of the subsurface, and the local
microclimate (Hausler et al., 2018; Sanford and Selnick, 2013; Shakesby
and Doerr, 2006). Because ET can comprise a large fraction of local and
regional water budgets, downstream water supplies can be impacted
when that flux is disrupted (Blount et al., 2020; Kettridge et al., 2017;
Martin, 2016; Moritz et al., 2014). The conterminous United States
(CONUS) is particularly vulnerable to water supply disruptions from
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forest fires because forested areas supply approximately one-half of its
surface freshwater supply (Hallema et al., 2018, 2017).

Prior work has confirmed the role of ET in post-disturbance water
budget modification. Goeking and Tarboton (2020) reviewed studies on
the effects of drought, beetle kill, and fire on water yield in western US
forests and attribute the bulk of observed changes to ET shifts (Goeking
and Tarboton, 2020). However, the vulnerability of a particular system
or resource to fire-induced ET shifts depends on the context of the fire. If
ET is reduced within a source water collection area, downstream water
supply and quality may be compromised if surface runoff exacerbates
erosion and increases reservoir sedimentation (Silins et al., 2009; Smith
et al., 2011). Fires outside source water areas may degrade fragile
terrestrial (Agee, 1994) or aquatic resources (Bixby et al., 2015) that
provide ecosystem services. Variables such as the distance of the burn
from the drainage outlet, size of the burned area relative to total
drainage area, and post-fire climate, may also impact how vulnerable a
system or resource is to fire-induced hydromodification (Brunkal and
Santi, 2017; Minnich, 2001). ET shifts may be temporary (Blount et al.,
2020), or conversion of forest to grassy or shrubby covers may perma-
nently alter local and watershed-scale hydrology (Hankins, n.d.; Jones
et al., 2020; Rodman et al., 2020).

Due to its high topographic, climatologic, and ecologic diversity, the
range of abiotic and biotic factors that control water partitioning in the
CONUS is wide (DeBano et al., 1998; Ma et al., 2020; Sellers, 1965). The
effects of fire on ET and other hydrologic fluxes vary accordingly.
Goeking and Tarboton (2020) cite instances where low flows, peak
flows, and snow water equivalent (SWE) increased, decreased, or
exhibited no change following disturbance. Mechanistically, fire can
cause a net reduction in ET by removing vegetation or decreasing the
amount of water available for transpiration or direct evaporation and
sublimation losses (DeBano et al., 1998). This can lead to an increase in
the fraction of precipitation that becomes surface runoff routed to res-
ervoirs or made available for aquifer recharge (Blount et al., 2020;
Boisramé et al., 2019; Hallema et al., 2018; Kinoshita and Hogue, 2015;
Sanford and Selnick, 2013; Saxe et al., 2018). Pertinent on the global
scale, post-fire ET reduction can disrupt global carbon cycling and, with
increases in the frequency and severity of wildfires (Parks and Abatzo-
glou, 2020; Westerling, 2016), contribute to climate change by causing
localized surface heating via latent heat flux reduction (Atchley et al.,
2018; Bond-Lamberty et al., 2009; Grau Andres, 2017). Conversely, ET
can increase where non-stand-replacing fires trigger rapid post-
disturbance vegetation growth (Goeking and Tarboton, 2020; Nolan
et al., 2015, 2014), where evaporative demand is high (e.g., on south-
facing slopes or where vegetation structure and composition changes
increase surface insolation (Goeking and Tarboton, 2020; Hausler et al.,
2018)), or where canopy loss promotes snow accumulation and subse-
quent sublimation (Jin et al., 2012; Sexstone et al., 2018).

Several studies evaluate the effect of fire on ET at the sub-basin to
regional scale. Ma et al. (2020) modeled ET reductions in the Sierra
Nevada for up to 15 years following low to high severity burns. They
attribute variations in the magnitude of reductions to differences in local
hydro-climate, topography, pre-fire vegetation density, and severity of
the disturbance (Ma et al., 2020). Poon and Kinoshita (2018) observed
decreased ET and smaller evaporation ratios (the ratio of ET depth to
precipitation depth for a unit area) across soil burn severities following
post-fire conversion of coniferous forest to grassland in New Mexico. In
Canadian boreal forest, although transpiration increased where fire
converted mature conifer stands to young deciduous forest, Bond-
Lamberty et al. (2009) observed a net decrease in ET at the regional scale
due to the effects of fire on mean stand age, forest species, and energy
balance (Bond-Lamberty et al., 2009). Hausler et al. (2018) and Nolan
et al. (2014) studied Portuguese and Australian eucalyptus stands and
observed increases in ET in low to moderate burn severity areas but
reductions in high burn severity areas due to decreased latent heat flux
from the canopy (Hausler et al., 2018; Nolan et al., 2014). These findings
align with observations from others that post-fire ET shifts are often
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accompanied by fire-induced alterations to the variables that control
surface energy partitioning, such as the reflective properties of a body
(emissivity and albedo) or the amount of shortwave radiation delivered
to objects and the ground surface (Dragosics et al., 2016; Hausler et al.,
2018; Jin et al., 2012; Sexstone et al., 2018).

A portion of the post-fire ET response variability recorded in the
CONUS may be explained by varying fire behavior and ignition sources.
When fire size is plotted for every fire included in the Monitoring Trends
in Burn Severity (MTBS) dataset for the CONUS (1984 through 2019),
the median area increases nearly monotonically with more westerly
longitudes (SM Figure A in Supplementary Materials). However, fire
occurrence is relatively high in portions of both the western and eastern
US. For example, of the fires included in the current study (all MTBS-
mapped fires from 2006 to 2014 in the CONUS), 786 are located in
Florida, 502 in Texas, 399 in California, 296 in Kansas, and 244 in
Arizona (SM Table A). These summaries corroborate previous research
(Hawbaker et al., 2013). Hawbaker et al. (2013) show that conducive
fire weather conditions, forest densification, and abundant opportu-
nities for human-caused ignitions due to extensive urban and suburban
development, were the primary drivers of the southwestern US’s large
fire sizes.

As more work shows that common disturbances can alter the com-
ponents of water and energy balances that control ET rates (including
mountain bark beetle kill (Livneh et al., 2015) and climatic forcing
(Fowler et al., 2018), in addition to fire), the importance of accounting
for such perturbances in hydrologic modeling is becoming clearer. Over
the last two decades, remotely sensed data have helped hydrologists
study disturbance events by facilitating estimations of hydrologic fluxes
at varying spatial and temporal extents. What were once prohibitive
obstacles for disturbance-change monitoring studies, such as capturing
the pre-disturbance condition, or observing remote locations, are now
overcome with primary and reanalysis products that require limited to
no post-processing. Regional-scale studies can be conducted from the
desktop. The current study and many of the aforementioned (Blount
et al., 2020; Poon and Kinoshita, 2018; Sexstone et al., 2018) utilize the
United States Geological Survey’s (USGS) operational 1 km? Simplified
Surface Energy Balance (SSEBop) product. Others use satellite-retrieved
reflectance data as inputs to independent ET calculations (Hausler et al.,
2018) or large-scale modeling simulations (Bond-Lamberty et al., 2009).
Goulden and Bales (2014) and Ma et al. (2020) developed statistical
relationships between ground-based measurements of ET and satellite
imagery-derived metrics (e.g., normalized difference vegetation index
[NDVI]) to estimate ET in uninstrumented locations.

Despite the substantial effort spent quantifying fire’s effect on basin
to regional-scale ET, no studies identify super-regional-scale trends or
evaluate the full range of conditions present in the CONUS. The current
work aims to fill that gap by characterizing spatial and temporal post-
fire ET response at the CONUS scale and numerous finer spatial ex-
tents. Our primary research questions include: (i) How have historical
wildfires modified the direction and magnitude of ET across the
CONUS? (ii) Can we identify spatial or temporal trends that can
help land managers plan for potential future post-fire water budget
modifications? And, (iii) what controls the response? These inquiries
are relevant to natural resource managers in fire-prone areas who need
to understand the potential hydrologic response of their landscape to
wildfire. Identifying drivers of post-fire ET response can also inform
process-based and statistical hydrologic modeling efforts.

2. Material and methods

We investigate the response of ET to fire using metrics calculated
with per-pixel estimates of daily actual ET (ET,) from the 1 km? SSEBop
product and Parameter-elevation Regressions on Independent Slopes
Model (PRISM) precipitation estimates (Oregon State University,
Northwest Alliance for Computational Science and Engineering, 2019).
Pixel-level differences of pre and post-fire ET, and the ratio of ET, to
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precipitation (“ET/P,” “evaporation ratio”) are quantified for the first
five post-fire years; previous studies have also used the evaporation ratio
to normalize for climate variability (Blount et al., 2020; Poon and
Kinoshita, 2018; Reitz et al., 2017). Machine learning (ML) methods are
used to group pixels with similar magnitudes and directions of post-fire
ET/P response. At every SSEBop pixel, pyrologic, topographic, and cli-
matic data are resampled at the 1 km resolution and relationships be-
tween ET/P response and independent variables are evaluated.

2.1. Geospatial data collection and processing

2.1.1. Identification of ET, data from burned areas

The MTBS fire data layer is used to identify burned areas in the
CONUS from 2000 to 2015 (Eidenshink et al., 2007). MTBS maps the
extent and burn severity of fires using Normalized Burn Ratio (NBR) and
differenced Normalized Burn Ratio (ANBR) data generated from 30 m
Landsat scenes. In this study, 1 km monthly SSEBop ET, data are
extracted from pixels that intersect burned 30 m MTBS pixels. Pixels are
filtered to remove areas where more than one fire event occurred from
1999 to 2015 and pixels that are less than 75% burned (according to
their intersection with MTBS fire perimeters). Fires that occurred before
2005 are removed so that only burned areas with five years of pre-fire
ET, data are retained. 140,509 1 km SSEBop pixels from 5390 individ-
ual fires remain for analysis (see pixel distribution in Fig. 1).

2.1.2. SSEBop
The USGS’s operational 1 km monthly SSEBop ET, product (Senay
et al., 2013) is based on the Simplified Surface Energy Balance (SSEB)

Journal of Hydrology 603 (2021) 127162

approach (Senay et al., 2007, 2011). Similar to the Surface Energy
Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998) and
Mapping EvapoTranspiration at high Resolution with Internalized
Calibration (METRIC) (Allen et al., 2007) models, SSEBop utilizes hot
(Ty) and cold (T,) reference values to predefine temperature difference
(dT) (boundary conditions) at each pixel under the assumption that dT is
constant at a given location on the same day each year (Senay et al.,
2007). Assumptions are made to allow for quantification of sensible heat
flux and total net radiation, and each day’s land surface temperature
(LST) is compared to the hot pixel condition and dT to generate a
monthly ET fraction. ET, is calculated by multiplying the ET fraction
with reference ET values (ET,) from the USGS Earth Resources
Observing and Science center (EROS) (Savoca et al., 2013; Senay et al.,
2013, 2008).

The 1 km SSEBop product has been evaluated in numerous studies.
SSEBop ET, agreement with eddy covariance Ameriflux tower estima-
tions located throughout the CONUS in varying climatic conditions and
land cover classes was high (Chen et al., 2016; Savoca et al., 2013; Senay
et al., 2013). Velpuri et al. (2013) report good agreement between 1 km
Moderate Resolution Imaging Spectroradiometer (MODIS) global ET,
(MOD16), SSEBop ET,, eddy covariance, and water balance data across
the CONUS (Velpuri et al., 2013). Senkondo et al. (2019) report statis-
tically comparable SSEBop, SEBAL, and Simplified Surface Balance
Index (S-SEBI) ET, estimates across different spatial scales and land
cover classes in sub-tropical Tanzania (Senkondo et al., 2019). SSEBop’s
algorithm is also being applied with 30 m and 100 m Landsat LSTs (Dias
Lopes et al., 2019; Senay et al., 2016, 2014; Sharma and Tare, 2018;
Singh and Senay, 2015), although only a provisional product that is

Fig. 1. Pre and initial post-fire ET and ET/P response for all pixels included in the study. (A) Pre-fire five-year average ET (ET,); (B) pre-fire five-year average annual
evaporation ratio (ET/P); (C) percent change in ET in post-fire year one; (D) percent change in ET/P in post-fire year; (E) magnitude change in ET in post-fire year

one; (F) magnitude change in ET/P in post-fire year one.
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subject to revision is currently available (USGS EROS Customer Services,
n.d.).

2.1.3. Independent variables

Independent variables (landscape attributes) are extracted at each
SSEBop pixel including burn severity, climatological descriptors, pre-
fire vegetation type, topographical and positional descriptors, and
soils and geology data. For each SSEBop pixel, extracted data are
retained and stored as columns in a data frame (one row per pixel).
Dependent and independent variable descriptions, data sources, pro-
cessing requirements, units, and summary calculations are provided in
Table 1. Except for aspect, data at spatial resolutions larger or smaller
than the 1 km SSEBop pixels are disaggregated or upscaled by area-
weighted averaging using the raster package in the R programming
environment (Hijmans et al., 2021).

Details of each fire event (e.g., incident type (wildfire or prescribed
fire), ignition date) and burn severity data are obtained from 30 m MTBS
rasters (Eidenshink et al., 2007). We calculate the percentage of each
burn severity class (unburned, unburned to low, low, moderate, high,
increased greenness) comprising 1 km SSEBop pixels and retain the
fractional data for each pixel. Similarly, we calculate the percentage of
each pre-fire National Land Cover Database (NLCD) vegetation cover
type comprising each SSEBop pixel. The date of a pixel’s fire determines
which NLCD raster to use (2004, 2006, 2008, 2011, 2013, using the
raster most recently preceding the fire event) (Wickham et al., 2014).

Monthly air temperature data are extracted at each SSEBop pixel
from 4 km PRISM rasters and the maximum monthly temperature
(averaged over all days in the month) for all years 2000 through 2015 is
calculated (Oregon State University, Northwest Alliance for Computa-
tional Science and Engineering, 2019). The area-weighted average is
used when a 1 km SSEBop pixel intersects more than one 4 km PRISM
pixel. Daily SNOw Data Assimilation (SNODAS) 1 km SWE rasters
(National Operational Hydrologic Remote Sensing Center, 2004) are
filtered to the last day of each of the winter months (December through
February) and the mean of the final monthly SWE is calculated for each
pixel. SWE and air temperature data are not normalized in the current
study and are therefore dependent on climate and location. To account
for pre-fire antecedent soil moisture, the average Palmer Drought
Severity Index (PDI) score for the 12 months preceding the fire is
calculated from 2.5 degree monthly rasters (Dai, 2017). Latitude and
longitude are the centroid of each 1 km SSEBop pixel.

Elevation, aspect, and slope were obtained from 30 m Landfire ras-
ters and upscaled to 1 km (USDA Forest Service, USDI, n.d.). To upscale
aspect, we use a procedure to account for the discontinuity at zero/360
degrees (Pewsey, 2014). Measures of eastness and westness are gener-
ated at each pixel by converting degrees to radians and taking the dif-
ference of the sine and cosine of each radian from its arctangent.
Potential direct incident solar radiation is calculated from aspect, slope,
and latitude using an equation provided by McCune and Koen (2002).
Gridded available water capacity (AWC) data (provided as cm water per
cm of soil) were obtained from the Gridded National Soil Survey
Geographic Database (gNATSGO) (USDA NRCS, n.d.). The spatial res-
olution of the native gNATSGO file is variable; the area-weighted
average is used when more than one soil class polygon intersects the
1 km SSEBop grid. Lithologic data of variable spatial resolution were
obtained from the State Geological Map compilation (Horton, 2017) and
the fraction of each SSEBop pixel underlain by igneous, sedimentary,
metamorphic, or unconsolidated parent material calculated.

2.2. ET, response metrics

Metrics to capture the post-fire ET, response are calculated at each
pixel for each post-fire year one through five. To normalize for precip-
itation variability across the CONUS, evaporation ratios (ET/P) are also
calculated at each 1 km pixel with monthly 4 km PRISM precipitation
data using an area-weighted average if the 1 km grid intersects more
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than one PRISM cell (Oregon State University, Northwest Alliance for
Computational Science and Engineering, 2019). Percent and magnitude
ET, and ET/P change between each post-fire year and the pre-fire five-
year average ET, and ET/P are calculated. Pre-fire average annual ET,
and ET/P are the average annual ET, depth and evaporation ratio for the
five years preceding the month of fire ignition; post-fire year one ET,
and ET/P are the total ET, and ET/P for the 12 months following the fire
event, starting one month after the fire ignition month (according to the
date of fire ignition as recorded in the MTBS database). Post-fire year
two is the next 12-month interval, and so on. For example, if a fire
ignited on July 15, 2010, post-fire year one is September 1, 2010
through August 31, 2011. Using a burn time between one to two months
aligns with Westerling’s (2016) finding that from 2003 to 2012, the
mean burn time in the western US was 52 days (Westerling, 2016).

SSEBop may overestimate ET, from unvegetated areas because al-
gorithms used to process reflectivity data can underestimate the LSTs of
high albedo surfaces (McShane et al., 2017). Areas of higher and lower
precipitation and ET, may also be underrepresented in the lower reso-
lution PRISM precipitation data compared to the finer resolution SSEBop
ET, data. Using relative pre and post-fire differences allows even the
pixels with unusually high ET/P ratios to provide meaningful informa-
tion. For example, even the pixel with the highest pre-fire average ET/P
included in the analysis (a shrubby area in Arizona) has a post-fire year
one percent change of only —15% because the post-fire year one ET/P
ratio is as similarly inflated as the pre-fire average ET/P ratio.

2.3. ET, recovery metrics

Metrics to assess ET/P recovery over time are calculated following
Pickell et al. (2016) and Frazier et al. (2018). For each pixel, the Relative
Recovery Indicator (RRI), the Ratio of 80% Pre-disturbance (R80P), and
the Year-on-Year Average (YrYr) are computed using the magnitude
change in ET/P. RRI takes the maximum ET/P value from post-fire year
four or five and compares it to the initial, post-fire year one ET/P value
(equation (1)). Negative values indicate reductions in ET/P over time
relative to initial disturbance, zero indicates no recovery, a value of one
indicates an equal amount of recovery relative to initial disturbance, and
positive values indicate gains in ET/P over time.

- max (ETPpo_wh ETPpn:tS) - ETPpnxtl
P”eaerTp - ETPpostl

RRI (@D)]

R8OP is the percent recovered back to 80% of the pre-fire average
ET/P by year four or five (equation (2)). Interpretation is similar to
RRI’s. Negative values indicate ET/Ps smaller than 80% of pre-fire ET/P
by post-fire year four or five, one indicates recovery equivalent to 80%
of pre-disturbance values, and values greater than one exceed 80% of
pre-disturbance ET/P.

max (E TP posis, E TPpmxs)
([7 TCaverrp ) *0.8

YrYr is the average annual post-disturbance change in the first five
post-fire years (equation (3)). Negative values indicate an average loss in
ET/P each year, zero indicates no recovery, and positive values indicate
an average gain, or recovery, in ET/P each year (Frazier et al., 2018).

RSOP = (2

 max(ETPpous, ETPpous) — ETPpow

YrYr = 5 3

2.4. K-means clustering

K-means clustering (MacQueen, 1967) is used to segment burned
CONUS SSEBop pixels into related groups according to the direction and
magnitude of ET/P response in post-fire year one (Fig. 2, Fig. 3). ET, is
not included in the clustering analysis because it does not normalize for
the climatic variability present in the CONUS. K-means clustering is a
heuristic, unsupervised ML algorithm that separates n observations into
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Table 1
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Summary of the parent datasets and calculated response and recovery metrics used in study. Table provides the name of dataset or metric, source of the dataset, native
spatial and temporal resolution, units, and data processing steps.

Data/Variable Name

Abbreviation

Data Source

Native
Spatial
Resolution

Native
Temporal
Resolution

Modified
Temporal
Resolution

Unit

Processing

Response
variables

Recovery
metrics

Actual
evapotranspiration

Evapotranspiration
ratio

Percent change in
ET/P in post-fire
years 1 through 5

Magnitude change in
ET/P in post-fire
years 1 through 5

Relative recovery
indicator

Ratio 80% of Pre-
disturbance

ET,

pre_ave ET/P and
ET/P_postX (year
one through five)

pc ET/P.yrX (year

one through five)

abs yrX ET/P (year

one through five)

R80OP

SSEBop, USGS (
Senay et al., 2007,
2013)

Calculated from
ET, and ppt

Calculated from
pre_ave ET/P and
ET/P_postX

Calculated from
pre_ave ET/P and
ET/P_postX

Calculated from
abs yrX ET/P

Calculated from
abs yrX ET/P

1 km

1 km

1 km

1 km

1 km

1 km

Monthly

Monthly

Annual

Annual

Annual

Annual

Annual

Depth (mm)

Fraction
(mm/ mm)

Percent

Fraction

Fraction

Fraction
(converted to
percent in
Fig. 10)

Projection
transformed to CRS
Albers Equal Area
NADS83

Calculated on an
annual basis from
monthly SSEBop
ET, and PRISM ppt
depths. pre_ave ET/
P is the average ET/
P for the 60 months
(five years) prior to
the month fire was
ignited; ET/P_postX
(one through five)
are the first twelve
months beginning
one month after
month of fire
ignition (post-fire
year one), second
twelve months
following post-fire
year one (post-fire
year two), etc.
Percent change
calculated from
each ET/P_postX
value (years one
through five)
relative to

pre_ave ET/P
Magnitude change
(difference)
calculated from
each ET/P _postX
value (years one
through five)
relative to

pre_ave ET/P

From Frazier et al.
(2018), RRI
calculated from
pre_ave ET/P and
ET/P_postX as the
percent recovery of
ET/P by post-fire
year four or five,
whichever is
greatest, relative to
the initial
magnitude change
in ET/P (max(ET/
P post4, ET/

P post5)/

(pre_ave ET/P -

abs yr1_ET/P))
From Frazier et al.
(2018), R80I
calculated from
pre_ave ET/P and
ET/P postX as the
percent recovery of
ET/P by post-fire
year four or five,
whichever is
greatest, relative to
the 80% of the pre-
disturbance value
(max(ET/P_post4,

(continued on next page)
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Table 1 (continued)
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Data/Variable Name  Abbreviation Data Source Native Native Modified Unit Processing
Spatial Temporal Temporal
Resolution Resolution Resolution
ET/P_post5)/(0.8*
pre_ave ET/P))
Year-on-year YrYr Calculated from 1 km Annual - Fraction From Frazier et al.
average abs yrX ET/P (converted to (2018), YrYr
percent in calculated from ET/
Fig. 10) P postX as the
average percent
recovery of ET/P
experienced each
post-fire year (max
(ET/P_post4, ET/
P post5)) — ((ET/
P post1)/5)
Independent Burn severity burnsev_low_percent Calculated from 30 m Compiled - Percent Percent of each 1
variables burnsev_mod percent MTBS dNBR raster annually for km SSEBop pixel
burnsev_high percent (Eidenshink et al., each MTBS- comprised by each
2007) mapped fire burn severity class
(calculated)
Land cover nlcdXX_percent Calculated from 30 m Static - Fraction Fraction of each 1
most recent pre-fire km SSEBop pixel
NLCD land cover comprised by each
raster (2001, 2004, NLCD class
2006, 2008, 2011, (calculated)
2013, 2016) (
Wickham et al.,
2014)
Precipitation ppt Parameter- 4 km Monthly Annual Depth (mm) - Downscaled from
elevation 4 km to 1 km using
Regressions on area-weighted
Independent Slopes average when more
Model (PRISM) than one PRISM tile
(2019) (Oregon underlaid SSEBop
State University, pixel
Northwest Alliance - Monthly total
for Computational precipitation
Science and depths (rain +
Engineering, 2019) melted snow)
summed to annual
Temperature, tmax PRISM (2019) ( 4 km Monthly Annual Degrees (C) - Downscaled from
maximum monthly Oregon State 4 km to 1 km using
University, area-weighted
Northwest Alliance average when more
for Computational than one PRISM tile
Science and underlaid SSEBop
Engineering, 2019) pixel
- Maximum
monthly
temperature
(averaged over all
days in the month)
averaged over years
2000-2015
Snow-water SWE NOAA National 1 km Daily Mean Depth (mm) Average end-of-
equivalent Operational monthly month SWE depth
Hydrologic Remote depth for for winter months
Sensing Center winter (December through
(NOHRSC) Snow months February)
Data Assimilation only
System (SNODAS)
(National
Operational
Hydrologic Remote
Sensing Center,
2004)
Palmer Drought PDI NOAA, UCAR/ 2.5 degree Monthly Average Score (-10 = - Downscaled from
Severity Index NCAR, Western score for most severe 2.5 degree to 1 km
Regional Climate the twelve dryness, +10  using area-
Center, Dai Global months = most weighted average
PDSI (Dai, 2017) preceding severe when more than
the fire wetness) one PDI tile
ignition underlaid SSEBop
month pixel
- Calculated

average score for

(continued on next page)
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Table 1 (continued)
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Data/Variable Name Abbreviation Data Source Native Native Modified Unit Processing
Spatial Temporal Temporal
Resolution Resolution Resolution
twelve months
preceding fire
ignition month
Available Water AWC USDA-NRCS Variable Static. - Cm water per ~ Downscaled from
Capacity Gridded National Compilation of cm soil per variable spatial
Soil Survey best available km, 0-91 cm. resolution to 1 km
Geographic soils data from The available  using area-
Database STATSGO2, water supply weighted average
(gNATSGO) (USDA SSURGO, and multiplied by =~ when more than
NRCS, n.d.) Raster Soil thickness of one soil class
Surveys soil polygon underlaid
SSEBop pixel
Latitude latitude Centroid of SSEBop  — Static - Degrees, Centroid of SSEBop
pixel minutes, pixel extracted from
seconds SSEBop raster
Longitude longitude Centroid of SSEBop - Static - Degrees, Centroid of SSEBop
pixel minutes, pixel extracted from
seconds SSEBop raster
Elevation elevation Landfire (USDA 30m Static - Meter Upscaled to 1 km
Forest Service, using area-
USDI, n.d.) weighted average
Slope slope Landfire (USDA 30m Static - Degrees Upscaled to 1 km
Forest Service, using area-
USDI, n.d.) weighted average
Potential direct solarrad_1 Calculated from 30m Static - MJ ecm-2 yr-1 ~ Upscaled to 1 km
incident solar slope, aspect, using area-
radiation latitude (McCune weighted average
and Keon, 2002). for slope and
Slope, aspect, latitude, arctan-1
latitude from (cos(rad), sin(rad))
Landfire (USDA of aspect
Forest Service,
USD, n.d.)
Lithology (fraction frac_sed State Geological State USGS Static - Fraction Downscaled from
sedimentary, frac_ign Map Compilation ( geological variable spatial
igneous, frac_meta Horton, 2017) maps ranging resolution to 1 km
metamorphic, frac_unc in scale from using area-
unconsolidated) 1:50,000 to weighted average
1:1,000,000 when more than

one polygon
underlaid SSEBop
pixel. Provided as
the fraction of each
1 km SSEBop pixel
comprised by
sedimentary,
igneous,
metamorphic, and
unconsolidated
data class
(calculated)

k clusters, where k is pre-specified by the analyst. Observations (pixels)
are grouped such that cluster members are as similar (cohesive) to each
other and as dissimilar (separated) to the other clusters as possible ac-
cording to their sum of squared error (Lee et al., 2011; MacQueen,
1967). The k-means base R function is used with an nstart of 25 and no
limit on the maximum number of iterations allowed. The silhouette
score is calculated with the base R silhouette function to determine the
appropriate number of clusters (k). Silhouette values indicate the
aggregate similarity of data points within the same cluster relative to the
members of other clusters (Rousseeuw, 1987). Explanatory variables are
excluded from the clustering algorithm to reduce spatial biases inherent
to topographic, geologic, and climatic characteristics. Parametric one-
way analysis of variance (ANOVAs) t-tests and Tukey’s honestly signif-
icant difference (HSD) single-step multiple comparison tests are run on
cluster groups to ensure response metrics are significantly different (o« =
0.05) between the resultant clusters (Rouder et al., 2016).
Unsupervised partitioning can yield less predictable results than
supervised learning methods and precise information about the

algorithm’s data sorting methods is not provided (Battaglia et al., 2016).
This makes it difficult to understand the underlying relationships
differentiating the resulting cluster groups and limits the knowledge
gained from the analysis about post-fire processes. To address these
limitations, clusters are separated further into pre-defined Environ-
mental Protection Agency (EPA) Level I Ecoregions (Omernik and
Griffith, 2014). Relationships between ET/P response and independent
variables are explored within each unique cluster-EPA ecoregion group
(discussed in the following section).

2.5. Evaluation of controlling factors and their spatial patterns

Distributions of independent variables between clusters are visual-
ized with boxplots (SM Figure B). However, due to the high ecologic,
topographic, and climatic variability present in the CONUS, we hy-
pothesize that relationships between post-fire ET/P response and inde-
pendent variables may be regionally unique. If so, this would limit our
ability to identify controlling relationships from CONUS-scale data
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Fig. 2. Statistical distribution of SSEBop pixels between clusters (response groups). Boxplot center bars indicate median, boxplot hinges are 25th and 75th per-
centiles, and whiskers are the largest value less than 1.5*interquartile range (IQR) + each hinge. Outliers are plotted as individual points. Box widths indicate sample
size. Percent and magnitude changes in post-fire ET/P are calculated from mean pre-fire ET/P. Zero change from the pre-fire mean ET/P is indicated by the dashed
horizontal red line. (A) Boxplots of post-fire year one percent change in ET/P for each of the five clusters (number of pixels in cluster provided below x-axis label).
Plots provided at two different y-scales to show the large percentage increase in cluster 5 (y-axis scale extended to 400% in top plot). (B) Boxplots of post-fire year one
magnitude change in ET/P for each of the five clusters. Plots provided at two different y-scales to show the large magnitude decrease in cluster 1 (y-axis scale
extended to —400% in top plot) and large magnitude increase in cluster 4 (y-axis scale extended to 200% in top plot). (C) Pre-fire five-year average ET/P of each
cluster. (D) Percent of pixels in each cluster with magnitude changes in ET/P greater than one standard deviation of their five-year pre-fire ET/P values. Shown for
post-fire years one through five (x-axis). For example, in post-fire year one, 95% of cluster one’s pixels have a magnitude change in ET/P greater than the pre-fire ET/
P variability (represented by an exceedance of one standard deviation of the fire pre-fire annual ET/P values), whereas only approximately 25% of cluster 4’s pixels
exceed pre-fire ET/P standard variability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

summaries or analyses. To gain insight, after pixels are grouped into
clusters, pixels are further separated into EPA Level I Ecoregions (EPA
ecoregion) (Fig. 4). The EPA uses physical and biological spatial corre-
lation patterns to divide North America into regions that are generally
similar in terms of the type, quality, and quantity of environmental re-
sources. Although regions mapped at coarser resolution have greater
underlying variability within each ecoregion, we use the Level I

delineation because of the broad spatial extent of our study.

The average of each independent variable is calculated for each
unique EPA ecoregion-cluster data subset (SM Table B). The resultant
data summary is a geophysical description of each EPA ecoregions’
burned areas and provides a qualitative snapshot of regional patterns
between potentially explanatory variables and post-fire ET/P response
(using cluster assignment as a proxy for response). Patterns are indeed
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Fig. 3. Spatial distribution of all burned SSEBop pixels included in the study by cluster. Table includes the number of pixels per cluster (n) and as a percentage of
total pixels and the general trend of percent and magnitude ET/P change in post-fire year one. Trend is indicated by direction and size of arrow (down indicates post-

fire ET/P reduction).

spatially variable, forming the basis for conducting quantitative statis-
tical testing on both CONUS and regional-scale datasets (to test for
overarching trends). Summaries of incident type (prescribed versus
wildfire), post-fire ET/P response, and location can now be generated at
different spatial scales.

Pearson’s R correlation is evaluated between independent variables
and the percent change in ET/P in post-fire year one in R. The analysis is
repeated on various data subsets including a) all 140,509 CONUS pixels,
b) pixels in each cluster (e.g., all pixels in the CONUS assigned to cluster
2), c) pixels in each EPA Level I ecoregion (e.g., all pixels within the
Eastern Temperate Forests EPA ecoregion, regardless of cluster assign-
ment), and d) pixels in each unique combination of cluster assignment
and EPA Level I ecoregion (e.g., pixels assigned to cluster 2 within the
Eastern Temperate Forests EPA ecoregion). Statistical significance of
correlation measures is evaluated with Pearson’s method from the
Kendall R package (o« = 0.05) (McLeod, 2011).

A multiple linear regression (MLR) least-squares model is

constructed for each data subset to evaluate the relative importance of
explanatory variables on post-fire year one ET/P percent change. The
absolute value of an explanatory variable’s regression coefficient de-
scribes how much response variance is accounted for by the dependent
variable (Farmer et al., 2019). The MLR model R? describes the degree to
which response variance is accounted for by all of the independent
variables included in the model collectively (Davis, 2002). Only inde-
pendent variables that are significantly correlated with ET/P response
(p <0.05, R > 0.20) are included in each data subset’s MLR model, and
only the variable with the higher R value is retained when explanatory
variables are collinear. Regression models are constructed in R, and
regression coefficients are standardized with the QuantPsyc package’s
Im.beta function (Fletcher, 2012).

2.5.1. Burn scar scale assessment
To further test the effect of scale on the explanatory power of inde-
pendent variables, correlation is evaluated and MLR models constructed
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Fig. 4. Distribution of the ten EPA Level I Ecoregions covering the CONUS study domain (Omernik and Griffith, 2014).

for pixels within three individual fires (2007 Zaca Fire in southern
California (Fig. 5); 2012 High Park Fire in the Colorado Rocky Moun-
tains (Fig. 6); 2013 Rim Fire on the western slope of California’s Sierra
Nevada (Fig. 7)). The fires are randomly selected such that different
parts of the CONUS and the range of ET/P responses (pixels assigned to
clusters 1 through 4) are sampled.

2.6. Attribution of ET/P shift to fire

The standard deviation of each pixel’s annual ET/P data for the five
years preceding the fire is calculated and compared to the magnitude
change in post-fire year one ET/P. A difference-in-difference (DID)
regression is also used to compare pre and post-fire ET/P time series
from pairs of burned and unburned pixels from a selection of fires in the
western US. DID is frequently used in econometrics to determine the
effect of a treatment on outcome (response). One group is exposed to the
treatment, one is not, and the difference in the outcome variable is
tracked before and after exposure. The untreated group controls for
confounding factors that simultaneously influence response (Miiller and
Levy, 2019). In the DID analysis, burned pixels assigned to cluster 1 are
the treatment group and pixels from adjacent, unburned areas are the
control. Cluster 1 pixels are used because their relatively large post-fire
year one ET/P reductions make them more likely to exhibit behavior
that can be differentiated from signals in the climate data (Hallema
et al., 2018; Lau and Weng, 1995).

2.6.1. Pixel selection

Due to computational limits, only a subset of the 140,509 burned
SSEBop pixels included in the greater study are evaluated with the DID
analysis. To test a range of conditions, one fire is randomly selected from
each of the four EPA ecoregions containing the majority of cluster 1
pixels (Northwestern Forested Mountains, Great Plains, North American
Deserts, Mediterranean California (pixel counts provided in SM
Table C)). Both fires from the burn scar scale analysis with pixels
assigned to cluster 1 (Rim Fire, Zaca Fire) are also included in the DID
analysis for continuity. At each of the six fires, ten pixels from adjacent,
unburned areas are randomly selected from nearby locations with

10

similar pre-fire vegetation and topography to the burned areas. We
evaluate ten pixels from each fire so that a range of local conditions and
proximities (distance from the burned area) can be tested. All pixels are
located at least 1 km away from the burn perimeter but do not exceed a
distance greater than the length of the burned area’s longest radius. The
majority are within 4 km of the burn perimeter (the length of a 4 km
PRISM cell) and within a 12-digit hydrologic unit (https://water.usgs.
gov/GIS/huc.html) that intersects the burn scar (following Ma et al.
(2020)). The annual pre and post-fire ET/P ratio is calculated for each
unburned pixel. Unburned pixels are paired with the cluster 1 pixel from
the adjacent burned area with the most similar pre-fire ET/P behavior
according to the root mean square error (RMSE) of their annual ET/P
time series for the five years preceding the fire.

2.6.2. DID and change point analyses

DID linear regression models are constructed for each pixel pair in R
using pre and post-fire annual ET/P as the response variable and dummy
variables to represent pre and post-fire periods and treatment and con-
trol groups. Due to the small sample size of each pair (five annual pre-
fire data points, between two and five post-fire annual data points
depending on the date of the fire), p-values < 0.10 are considered sta-
tistically significant.

Non-parametric Pettitt’s change point detection tests are applied to
each burned pixels’ annual ET/P time series to independently check the
timing of major behavioral shifts (Mallakpour and Villarini, 2016; Zhou
et al., 2019). Pettitt’s is based on the Mann-Whitney two-sample rank-
based test and detects a single change at an unknown point in time; it
is among the most widely used change point detection methods in
hydroclimatological studies (Mallakpour and Villarini, 2016; Zhou
et al.,, 2019). Pettitt’s is applied with the pettitt.test function from the
trend package in R (Pohlert, 2020). Due to the small sample size, p-
values < 0.10 are considered statistically significant.
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Fig. 5. Zaca Fire [CA3469511965920070704], Santa Barbara County, southern California, US, ignited July 4, 2007. (TOP) Cluster assignment of SSEBop pixels (data
plotted at the centroid of the pixel) included in fire perimeter and clustering analysis (percentage of SSEBop pixel burned has to be >75% to be retained for analysis);
(MIDDLE) MTBS burn severity rating and percent and magnitude change in ET/P in post-fire year one; (BOTTOM) percent change and magnitude change in ET/P in
post-fire year one, elevation (m), and the fraction of evergreen forest (NLCD class 42) comprising each pixel (the latter has one of the strongest correlations with post-
fire year one percent change ET/P (Table 3)). Legend scales indicate the maximum and minimum range of values for each metric for pixels in the fire. Basemapping
imagery from ArcMap v10.8. Service layer credits include “Esri, DigitalGlobe, GeoEye, Earthstart Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and
the GIS User Community.”
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Fig. 6. High Park Fire [CO4058910540420120609], Larimer County, Colorado, US, ignited June 9, 2012. (TOP) Cluster assignment of SSEBop pixels (data plotted at
the centroid of the pixel) included in fire perimeter and clustering analysis (percentage of SSEBop pixel burned had to be >75% to be retained for analysis); (MIDDLE)
MTBS burn severity rating and percent and magnitude change in ET/P in post-fire year one; (BOTTOM) percent change and magnitude change in ET/P in post-fire
year one, elevation (m), and the fraction of shrub/scrub cover (NLCD class 52) comprising each pixel (the latter has one of the strongest correlations with post-fire
year one percent change ET/P (Table 3)). Legend scales indicate the maximum and minimum range of values for each metric for pixels in the fire. Basemapping
imagery from ArcMap v10.8. Service layer credits include “Esri, DigitalGlobe, GeoEye, Earthstart Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and
the GIS User Community.”
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Fig. 7. Rim Fire [CA3785712008620130817], Stanislaus National Forest, California, US, ignited August 17, 2013. (TOP) Cluster assignment of SSEBop pixels (data
plotted at the centroid of the pixel) included in fire perimeter and clustering analysis (percentage of SSEBop pixel burned had to be >75% to be retained for analysis);
(MIDDLE) MTBS burn severity rating and percent and magnitude change in ET/P in post-fire year one; (BOTTOM) percent change and magnitude change in ET/P in
post-fire year one, elevation (m), and the fraction of metamorphic lithology comprising each pixel (the latter has one of the strongest correlations with post-fire year
one percent change ET/P (Table 3)). Legend scales indicate the maximum and minimum range of values for each metric for pixels in the fire. Basemapping imagery
from ArcMap v10.8. Service layer credits include “Esri, DigitalGlobe, GeoEye, Earthstart Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS
User Community.”
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3. Results
3.1. Spatial and temporal ET/P response

3.1.1. Initial post-fire ET/P response

CONUS-scale maps indicate that the dominant response of ET, and
ET/P to fire is a reduction in the first post-fire year (Fig. 1C through F).
The largest magnitude reductions occur in the southwest, while pixels in
the northwest have the lowest pre-fire average ET/Ps (Fig. 1B) which
makes them susceptible to large percent changes from comparatively
small magnitude shifts in ET/P. Pre-fire annual ET, is highest in the
southeast US and portions of northern California and the Pacific
Northwest that receive high annual precipitation (Fig. 1A). Post-fire ET,
changes mimic post-fire ET/P changes spatially (Fig. 1C and E).

To identify super-regional to CONUS-scale response patterns, pixels
are grouped into five clusters following results from the silhouette score
analysis. ET/P is reduced in 82% of all pixels analyzed during the first
post-fire year (Fig. 2, Fig. 3) including in all pixels assigned to clusters 1,
2, and 3. Cluster 1 comprises 9% of the pixels evaluated (Fig. 2, Fig. 3).
Its members are characterized by the largest percent change (Fig. 2A)
and magnitude (Fig. 2B) ET/P reductions and largest pre-fire average
ET/Ps (Fig. 2C). The majority of cluster 1 pixels are located in the
southwestern US within the Mediterranean California, Great Plains,
North American Deserts, and Northwestern Forested Mountains EPA
ecoregions (SM Table C). Of all EPA ecoregions, the biggest average
reductions in percent and magnitude post-fire year one ET/P and ET,
occur in the Mediterranean California EPA ecoregion (Table 2).

Cluster 2 comprises 30% of pixels. Relative to pixels in cluster 1,
cluster 2 pixels exhibit similarly large percent change ET/P reductions
but smaller magnitude ET/P reductions, possibly due to their smaller
pre-fire average ET/Ps. The majority of cluster 2 pixels are located in the
western US within the North American Deserts, Great Plains, North-
western Forested Mountains, and Mediterranean California EPA ecor-
egions (SM Table C). Cluster 3 comprises 43% of pixels. Members are
characterized by moderate to negligible post-fire year one percent and
magnitude change ET/P reductions and are well-distributed across the
CONUS. Cluster 4 comprises 18% of pixels and is characterized by
negligible to moderate increases in ET/P in post-fire year one. Like
cluster 3, cluster 4 pixels are well-distributed across the CONUS but are
most prevalent in the east and southeastern US; nearly all pixels in the
eastern US are assigned to cluster 3 or 4. Cluster 5 comprises 0.1% of
pixels. All 158 members are in the North American Deserts EPA Ecor-
egion and have small pre-fire average ET/Ps, which renders them sus-
ceptible to large percent changes. They have large percent but small
magnitude increases in ET/P in post-fire year one. Tukey HSD pairwise
comparisons of ANOVA tests indicate that pre-fire average ET/P ratios

Table 2
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and percent and magnitude ET/P changes are statistically different (p <
0.05) between all clusters in the first post-fire year, except the magni-
tude change between clusters 4 and 5.

A greater percentage of cluster 4’s pixels are in prescribed burn areas
(15%) than any other cluster (cluster 3: 7%; cluster 2: <1%; cluster 1:
<1%, cluster 5: 0%). Within cluster 4, pixels in EPA ecoregions located
in the eastern CONUS have the highest percentage of pixels in prescribed
burns (highest percentage in the Eastern Temperate Forests (63%) fol-
lowed by Tropical Forests (39%)) (SM Table C). Results are similar for
pixels in cluster 3 (highest percentage of prescribed burn pixels are in
Tropical Forests (51%) followed by Eastern Temperate Forests (42%)).
Of the cluster 1 and 2 pixels, the only EPA ecoregion-cluster combina-
tion with prescribed burn pixels comprising >1% of total pixel counts
are cluster 2 Eastern Temperate Forest pixels (16%). Thus, as a per-
centage of total fire activity in each ecoregion, fires are prescribed more
frequently in the eastern CONUS than in the west. In addition, cluster 4
pixels have the highest percentage of low burn severity area (except for
the 158 pixels in cluster 5) (SM Figure B, SM Table B). These results
suggest that prescribed fire tends to yield lower burn severities and
smaller ET/P reductions than wildfire.

3.1.2. Inter and intra-fire ET/P response variability

Statistical summaries of initial ET/P response and short-term re-
covery are provided by EPA ecoregion (Table 2) and US State (SM
Table A). According to standard deviations of cluster assignment and the
percent and magnitude ET/P change in the first post-fire year, some
states and EPA ecoregions have higher inter and potentially intra-fire
variability than others. Possibly owing to its greater topographic and
climatologic complexity (Hallema et al., 2018), ET/P response is more
variable in the western CONUS (where pixels are assigned to all five
clusters) than in the east (where nearly every pixel is assigned to clusters
3 or 4) (Fig. 3, Fig. 8). The eastern EPA ecoregions (Tropical Wet Forest
and Eastern Temperature Forest) also have the smallest post-fire year
one percent ET/P change standard deviations (Table 2). ET/P response
is fairly consistent in some parts of the west at both the burn scar and
regional scale, such as in southern California where nearly every pixel is
assigned to clusters 1 or 2 (Fig. 5, Fig. 8A) and in the wetter northern
California coast ranges where nearly every pixel is assigned to clusters 3
or 4 (Fig. 8F). But where landforms are complex and climatologic and
topographic gradients steep, even intra-fire variability can be high (e.g.,
pixels in the Sierra Nevada’s Rim Fire are assigned to clusters 1, 2, 3, and
4 (Fig. 7).

3.1.3. ET/P recovery over time
Post-fire ET/P approaches pre-fire ET/P with increasing time since
fire (Fig. 9). However, in pixels with the greatest initial reductions

Summary statistics by EPA Level I Ecoregion for SSEBop pixels included in clustering analysis (filter applied requires at least 75% of a pixel to be burned). Percent and
magnitude change in ET/P during the first post-fire year, RRI, R80P, and YrYr recovery metrics, mode and standard deviation of cluster assignment as a measure of
spread (variability) of ET/P response in each region, number of fires, the average number of SSEBop pixels per fire, and pre-fire average ET/P. Cell color indicates the
magnitude of the cell value. For columns “Percent Change ET/P, Post-fire Year 1,” “Magnitude Change ET/P, Post-fire Year 1,” and “Magnitude Change ET, Post-fire
Year 1,” redder hues indicate a reduction in the post-fire year one summary statistic, bluer hues indicate an increase in the post-fire year one summary statistic.

#1 km?
SSEBop | Pre-fire | Pre-fire Magnitude
# | Pixels | Mean | Mean Change ET,
Cluster |Fires|per Fire] ET ET/P Percent Change ET/P, Post-fire Year 1 Je Change ET/P, Post-fire Year 1 | Post-fire Year 1 | RRI | R80P | YrYr
25th 75th 25th 75th
EPA Level | MEAN | MEAN | MEAN MEDIAN Percentile Percentile | MEAN — MEDIAN Percentile Percentile | MEAN ~MEDIAN | MEaN | MEAN | MEAN
Ecoregion MODE | SD |SUM | MEAN | (mm) | (fraction) | (%) (%) D (%) (%) (fraction) (fraction) _SD__(fraction) _(fraction) | (mm) _ (mm) | (fraction) | (fraction) | (fraction)
5 Northern Forests 3 0.69] 55 25 489 0.73 -31 -36 25 -48 -12 -0.23 -026 021 -0.38 -0.07 -112 -83 0.78 1.18 | 0.04
6  NW Forested Mountains 3 1073|786 52 465 0.59 -34 -34 29 -54 -15 -0.19 -0.16 020 -0.29 -0.07 -163 -148 -0.12 | 1.06 | 0.03
7 Marine West Coast Forests 4 0.52| 19 14 852 0.66 8 10 24 -7 28 0.05 0.04 0.18 -0.04 0.19 -97 -90 0.88 1.52 | 0.02
8 Eastern Temp. Forests 3 0.59]1973] 5 1088 0.88 -6 -10 21 -21 5 -0.07 -0.08 022 -0.18 -0.04 -54 -24 1.45 | 1.30 | 0.02
9 Great Plains 3 0.94]1269| 23 520 0.88 -23 -20 30 -43 -4 -0.23 -0.15 032 -0.39 -0.03 -157 -95 -0.82 | 1.32 | 0.05
10 North American Deserts 2 080|871 43 156 0.43 58 -86 -25 -0.20 -0.15 041 -0.27 -0.06 -82 -54 212 1.69 | 0.05
11 Mediterranean California 1 |0.86/194| 48 451 1.00 32 -93 -55 -0.69 -0.67 | 048 -0.99 -0.35 -318 -320 0.83 | 0.95 | 0.10
12 Southern Semi-arid Highlands 3 0.80| 78 32 447 0.96 25 -46 -16 -0.29 -0.27 025 -0.47 -0.13 -156 -142 -0.43 | 1.24 | 0.05
13 Temperate Sierras 3 ]0.79/180| 45 524 -26 -28 24 -41 -15 -0.28 -0.27 027 -0.43 -0.13 -161 -163 4.10 1.19 | 0.02
15 Tropical Wet Forests 3 ]053] 93| 10 0.98 -4 -6 15 -14 5 -0.06 -0.06 0.6 -0.13 0.04 1 8 -2.26 | 1.35 | 0.03
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Fig. 8. Compilation of pixel cluster assignment for select areas around the US. Each colored dot represents the centroid of a SSEBop pixel and color designates pixel
cluster assignment. Basemapping imagery from ArcMap v10.8. Service layer credits include “Esri, DigitalGlobe, GeoEye, Earthstart Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community.
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(clusters 1 and 2), ET/P ratios are still only approximately 50% of their
pre-fire values by post-fire year five. The R80P recovery metric sub-
stantiates this finding (Fig. 10A). By post-fire year five, the median ET/P
of cluster 1 pixels remain below 80% of their pre-disturbance ratios.
Cluster 2 pixels are at nearly 80%, and clusters 3, 4, and 5 have recov-
ered back to, and in some cases exceeded, pre-fire ET/P.

The greater the initial departure from pre-fire ET/P, the steeper the
recovery trajectory slope during the first five post-fire years (e.g., cluster
1 in Fig. 9A and B; cluster 1 in Fig. 10B). Boxplots of the YrYr recovery
metric follow this trend: the greater the initial disturbance, the greater
the magnitude of recovery towards pre-fire ET/P occurs at each annual
time-step (Fig. 10B). Clusters with elevated ET/P in post-fire year one
relative to the pre-fire condition (clusters 4 and 5) approach pre-fire ET/
P through time from the opposite direction (Fig. 10B). Tukey HSD
pairwise comparisons of ANOVA tests show that the R80P and YrYr
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Fig. 9. Boxplots of ET/P response over time by
cluster. (A) Percent change in ET/P by cluster
through time, calculated as the percent change in
post-fire ET/P years one through five from mean
pre-fire ET/P. Plot provided at two different y-
scales to show the large percentage increase in
cluster 5 in post-fire year one (y-axis scale
extended to 400% in top plot). (B) Magnitude
change in ET/P by cluster, calculated as the
change in post-fire ET/P years one through five
from mean pre-fire ET/P. Zero change from pre-
fire mean ET/P indicated by dashed, horizontal,
red lines. Boxplot center bars indicate median,
boxplot hinges are 25th and 75th percentiles, and
whiskers are the largest value less than 1.5*IQR +
each hinge. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)

recovery metrics significantly differ between all clusters (p < 0.05). In
contrast, the RRI is not significantly different for any pairwise cluster
comparison (data not shown).

3.2. Drivers of ET/P response

Many independent variables lack explanatory power at the CONUS
scale. This is illustrated by the few significant correlations and low R? of
CONUS-scale MLR models (Table 3) (e.g., “all pixels” scenario MLR R%=
0.09, “cluster 3” scenario MLR R? = 0.12) and is expected given the
substantial overlap in independent variable distribution when data are
subset by cluster only (not further into regions) (SM Figure B). The only
overarching CONUS-scale trends identified are loose and include greater
reductions in post-fire ET/P at more westerly longitudes (“all pixels”
longitude R = 0.23, MLR coefficient = 0.27 (Table 3)) and with larger
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Fig. 10. Boxplots of Ratio of 80% Pre-disturbance and Year-on-year Average
recovery metrics by cluster. (A) R80P recovery metric. Y-axis is the percentage
recovered back to 80% of the pre-fire mean ET/P by post-fire year four or five
(shown in y-axis label equation as five), whichever is greater, with 100% being
exactly 80% of the pre-fire mean ET/P. (B) YrYr recovery metric. Y-axis is the
average annual post-fire change in ET/P in the first five post-fire years, with
negative values indicating an average loss in ET/P in each post-fire year one
through five. Boxplot center bars indicate median, boxplot hinges are 25th and
75th percentiles, and whiskers are the largest value less than 1.5*IQR + each
hinge. Box widths indicate sample size. Per ANOVAs and Tukey HSD pairwise
comparisons, all clusters are significantly different from all other clusters for
the R80P and YrYr metrics; no cluster is significantly different from any other
cluster for the RRI metric (not shown).

percentages of high burn severity area (“all pixels” high burn severity R
= -0.30, MLR coefficient = -0.12).

MLR model performance is improved in many of the sub-CONUS-
scale models (Table 3). Unique relationships emerge at smaller scales
that are masked by contradictory relationships in CONUS-scale datasets.
Variable relationships between ET/P response and pre-fire vegetation
type provide good examples: in the Great Plains EPA ecoregion, more
pre-fire shrub/scrub cover correlates with greater ET/P reduction (R =
-0.32), while the opposite is true in the Southern Semi-arid Highlands (R
= 0.23) (Table 3). More evergreen forest correlates with bigger ET/P
reductions in the Southern Semi-arid Highlands (R = -0.26) and
Northern Forests (R = -0.48), while the opposite is true in the North-
western Forested Mountains (R = 0.23), Marine West Coast Forests (R =
0.33), and Tropical Wet Forests (R = 0.26). Grassland/herbaceous cover
only exhibits control over ET/P response in the Great Plains (R = 0.28).

In some EPA ecoregions, we can better account for the high vari-
ability in the ET/P response by further subsetting ecoregions into cluster
groups. For example, MLR R? increased from 0.12 to 0.58 when only
cluster 3 pixels located in the Northern Forests EPA ecoregion were
analyzed (SM Table C). No significant correlations are identified among
cluster 2 or 3 pixels in Mediterranean California or cluster 4 pixels in the
Great Plains and Southern Semi-arid Highlands ecoregions (SM Table C).
More detailed studies are needed in these areas.

The direction of correlations between post-fire ET/P response and
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burn severity classification is consistent among the sub-CONUS-scale
datasets. Where burn severity and ET/P response are significantly
correlated (all pixels, cluster 1, cluster 3, every EPA ecoregion except
North American Deserts and Tropical Wet Forests (Table 3)), low burn
severity area is consistently associated with smaller ET/P reductions and
high burn severity with larger reductions. Standardized MLR model
coefficients show that burn severity is one of the most powerful
explanatory variables for some datasets (Mediterranean California and
Southern Semi-arid Highlands EPA ecoregions) (Table 3).

Prior work suggests that landscape response to burn severity depends
on vegetation type (Lentile et al., 2007; Minnich, 1983). To test this, we
select “pure” pixels (1 km pixel underlain by at least 75% of the same 30
m NLCD pre-fire vegetation type) of each of the CONUS’s dominant fire-
prone vegetation types (evergreen forest, shrub/scrub, grassland/her-
baceous, emergent wetland) and break out by EPA ecoregion (Table 4).
High burn severity is ubiquitously negatively correlated with more
evergreen forest. However, there are no significant correlations between
shrub/scrub cover and high burn severity in any of the EPA ecoregions.
Among the grassland/ herbaceous pixels, correlation direction is
inconsistent: high severity burns may promote increased post-fire ET/P
in the Northern Forests and Great Plains (positively correlated) but
reduced post-fire ET/P in the Temperate Sierras (negatively correlated).
For most EPA ecoregions, although the biggest post-fire year one percent
ET/P reductions often occur in shrub-scrub pixels, the magnitude
change in ET, is greatest in evergreen forest (Table 4).

3.2.1. Burn scar scale assessment

The explanatory power of independent variables at the burn scar
scale is evaluated. The Zaca Fire (Fig. 5) occurred in the Mediterranean
California EPA ecoregion (Table 3: Mediterranean California R?=0.12)
and the High Park (Fig. 6) and Rim fires (Fig. 7) in the Northwestern
Forested Mountains EPA ecoregion (Table 3: Northwestern Forested
Mountains R? = 0.23). MLR model performance is slightly improved
when data are broken out by individual fire (Table 3: Zaca Fire R2 =
0.33, High Park Fire R? = 0.26, Rim Fire R? = 0.36). The fact that SWE
and ET/P response are not significantly correlated at the EPA ecoregion
scale (Table 3) but are at the burn scar scale (Zaca Fire R = 0.25, High
Park Fire R = -0.30, Rim Fire R = -0.20) is further evidence that some
relationships are so site-specific, sub-regional scale analysis is required
to identify them. Note that, despite significant correlations, the SWE
variables’ MLR coefficients are small or insignificant in all three MLR
models.

Lithology accounts for a portion of the post-fire ET/P response
variability at both the High Park (Table 3: percent unconsolidated MLR
coefficient = 0.24) and Rim Fire areas (percent metamorphic MLR co-
efficient = 0.28). Pre-fire PDI (MLR coefficient = 0.21) and the amount
of evergreen forest (MLR coefficient = 0.28) are drivers of post-fire ET/P
response at the Zaca Fire. Interestingly, correlation direction between
pre-fire vegetation types and post-fire ET/P response are opposite be-
tween the High Park Fire (percent evergreen forest R = -0.30, percent
shrub/scrub R = 0.34) and the greater Northwestern Forested Moun-
tains EPA ecoregion (percent evergreen forest R = 0.23, percent shrub/
scrub R = -0.24). Neither variable is significant in the High Park Fire’s
MLR model. This indicates that even within the same EPA Level I
ecoregion, some trends do not apply to all locations universally.

Burn severity is the most influential variable in the MLR models of all
three fires (largest MLR coefficients) (Table 3). At the Zaca Fire, high
burn severity correlates with annual average precipitation (R = 0.35),
pre-fire shrub/scrub cover (R = -0.29), and pre-fire grassland/ herba-
ceous cover (R = -0.43). At the High Park Fire, high burn severity cor-
relates with average annual precipitation (R = 0.44), average maximum
annual temperature (R = -0.49), SWE (R = 0.59), AWC (R = 0.35),
elevation (R = 0.57), pre-fire evergreen forest (R = 0.57), pre-fire shrub/
scrub cover (R = -0.56), and pre-fire grassland/ herbaceous cover (R =
-0.37). At the Rim Fire, high burn severity correlates with slope (R =
-0.21), pre-fire evergreen cover (R = 0.23), and pre-fire shrub/scrub
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Table 3

Pearson’s R correlation and MLR standardized coefficients for each scenario (dataset) evaluated, including all pixels, clusters one through five, the three individual
fires (High Park, Zaca, Rim), and EPA Level I ecoregions (bottom panel). R only provided when > 0.20 (“~” indicates R < 0.20), and all R values shown are statistically
significant (p < 0.05 using Spearman (three individual fires) or Pearson (all other scenario data subsets) method for significance). No models are built for the cluster 4
or North American Deserts EPA Level I ecoregion scenarios because there are no correlation coefficients > 0.20 for either. Correlation coefficients are used to select
variables for MLR models to determine variable importance; if collinear, the independent variable with the highest R value is selected for subsequent analysis to reduce
overfitting (an underlined coefficient in the “Pear. Corr. Coeff.” column indicates collinearity between independent variables (R > 0.70) within that scenario data
subset; “/” indicates that a variable is not included in the MLR model due to collinearity between that variable and at least one other variable in the scenario data
subset). “*” indicates the MLR coefficient is insignificant. Cell color indicates the magnitude of the cell value. For example, ET/P response for pixels burned in the Zaca
Fire is negatively correlated with high burn severity (R = -0.41) meaning that pixels with higher percentages of high burn severity areas have greater reductions in post-
fire ET/P. The percent of high burn severity area is the most influential variable to ET/P response (MLR standardized coefficient = -0.52).
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Table 4
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ET, and ET/P response and recovery summarized by EPA Level I Ecoregion and pre-fire vegetation type. Pixels filtered so that only pixels at least 75% burned and
comprised by at least 75% of the same pre-fire vegetation type are included; ‘—’ indicates no pixels meet both filtering criteria for the combination or, for pixels that do
meet both filtering criteria, not enough are mapped as high burn severity to evaluate Pearson’s R correlation. Evergreen forest pixels: n = 30,711; shrub/scrub pixels: n
= 42,802; grassland/herbaceous pixels: n = 12,268; emergent wetland pixels: n = 953. Mean pre-fire ET, and ET/P are the averages for the five pre-fire years. For the
percent and magnitude change in ET, and ET/P columns and the YrYr column, redder hues indicate a reduction and bluer hues indicate an increase in the summary
statistic relative to pre-fire average values. YrYr is the average annual magnitude change in ET/P in the first five post-fire years (equation provided in section 2.3).
Pearson’s R correlation is calculated for the percent of a pixel burned at high severity against post-fire year one ET/P percent change. All correlation coefficients are

statistically significant (p < 0.05) using the Pearson method for significance.

Pre-fire ETa Pre-fire ET/P % Change ETa Magnitude Change % Change ET/P Magnitude Change ET/P YrYr Recovery Metric Pearson’s R
(mm) (mean) (fraction) (mean) (%) (mean) ETa (mm) (mean), (%) (mean) (mm) (mean) (fraction) (mean) Correlation
post-fire year 1 post-fire year 1 post-fire year 1 post-fire year 1 high burn severity
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year 1
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cover (R = -0.21). These correlations are performed separately to
illustrate the interconnectedness of variables and are not provided in the
current publication; full correlation matrices are available upon request.
Although many of the variables correlated with burn severity are not
also significantly correlated with post-fire ET/P response, it may be
possible to forecast post-fire ET/P in unburned areas given the consistent
relationship between burn severity and post-fire ET/P response: burn
severity could be predicted from the correlated landscape attributes and
post-fire ET/P response inferred from the burn severity prediction.

3.3. Attribution of ET/P shift to fire

In post-fire year one, the majority of cluster 1, 2, and 5 pixels exhibit
ET/P shifts outside one standard deviation of pre-fire ET/P (Fig. 2D).
Conversely, ET/P changes in approximately half of cluster 3 pixels and
most cluster 4 pixels are within one standard deviation, or the historical
observed ET/P range. This suggests that the ET/P reductions observed in
clusters 1, 2, and 5 are more likely a result of fire disturbance and less
likely a result of natural, interannual ET/P variability.

DID regressions are used to further evaluate the role of fire in post-
fire ET/P shifts on pairs of burned and unburned pixels from six
different locations in the western US. Results from all 60 pairs (ten pairs
of pixels per fire) are provided in SM Table D. Results from one randomly
selected pair of pixels from each fire are plotted in Fig. 11. The regres-
sion coefficients for the DID variable are negatively correlated with
annual ET/P in every pixel pair and are statistically significant (p <
0.10) for at least one pixel pair from each fire. However, DID coefficients
for numerous pixel pairs from the PK Complex and Zaca Fire are not
significant (SM Table D). Probability density functions (PDFs) of the
percent difference in pre and post-fire annual ET/P for the same pixel
pairs plotted in Fig. 11 show that post-fire ET/P differences increased
substantially relative to pre-fire differences. In the post-fire period, ET/
Ps of the unburned pixels are consistently higher than ET/Ps of their
burned counterparts (Fig. 12).

At each burned pixel, Pettitt’s test identifies a change in ET/P at the
year preceding the fire (data distributions changed starting at post-fire
year one) (Fig. 11, SM Table D). Possibly owing to the short length of
the datasets and high annual ET/P variability, results for Pettitt’s test are

19

only significant for pixels in three of the six fires (LaBrea, Moonlight,
Zaca). Pettitt’s test also identifies significant shifts in pre-fire year one
ET/P data for unburned pixels adjacent to the PK Complex and Zaca Fire
areas.

Overall, results support the hypothesis that fires are a primary driver
of post-fire ET/P shifts. Results from the PK Complex are the least
definitive: although ET/P is initially reduced in burned pixels relative to
unburned pixels, ET/P recovered quickly and closely matched the un-
burned pixels’ behavior after post-fire year one (Fig. 11; behavior is
similar for the other nine pairs). The PK Complex’s ten burned pixels are
in areas mapped at low to moderate burn severity and were comprised of
varying fractional areas of evergreen forest and grassland/ herbaceous
cover before the fire. Vegetation recovery may have been rapid in the
low burn severity areas and the grasslands. Results from the Zaca fire
pixel pairs were also irresolute. Given its large percentage of high
severity burn area and big post-fire year one ET/P reductions (Fig. 5),
the lack of significant DID regression coefficients at the Zaca Fire is
unexpected.

4. Discussion
4.1. Spatial and temporal ET/P response

This is the first study to evaluate wildfire-induced ET, and ET/P
modification at the CONUS extent. We identify locations where the di-
rection and magnitude of post-fire ET/P shifts may be more easily
inferred (regions with low inter and intra-fire response variability) and
less easily inferred (high inter and/or intra-fire response variability).
Where variability is high, predicting the potential hydrologic response
of an unburned area to fire may be difficult.

Our data indicate high intra-fire ET/P response variability at the Rim
Fire burn area (western slope of Sierra Nevada) (Fig. 7). It is notable that
the fire’s burn severity patterns were also variable (middle panel of
Fig. 7) and that the current study and previous work (Blount et al., 2020)
link post-fire ET, response to burn severity. Insets of other burned areas
in Northern California (Fig. 8F) and the Sierra Nevada specifically
(Fig. 8B) show qualitatively that other burns in the fire’s vicinity have
also had variable intra-fire ET/P response (pixels assigned to clusters 1,
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Fig. 11. Difference-in-difference (DID) regression and Pettitt’s change point detection test results for paired burned and unburned pixels from select fires throughout
the western CONUS. One fire from each of the EPA Level I Ecoregions that contain the majority of cluster 1 pixels was randomly selected (Great Plains: PK Complex
Fire [TX3289209866620110413]; Mediterranean California: LaBrea Fire [CA3493612002720090808]; Northwestern Forested Mountains: Moonlight Fire
[CA4022012073620070903]; North American Deserts: North Schell Fire [NV3967911463320120612]). Pixels from the three case study fires with pixels assigned to
cluster 1 are also analyzed (Rim Fire [CA3785712008620130817]; Zaca Fire [CA3469511965920070704]). Ten pairs of burned and unburned pixels are selected for
each fire; results from only one randomly selected pair from each fire are plotted in the figure. Unburned pixels are selected from areas adjacent to and outside of fire
perimeters. Burned pixels belong to cluster 1 and are selected for having the most similar pre-fire ET/P behavior to the paired, unburned pixel according to the root
mean squared error (RMSE) of each pixels’ annual pre-fire ET/P for the five years preceding the burn event. ‘DID Coef’ is the value of the DID coefficient variable,
‘DID p’ is the p-value of the DID coefficient. As detected by Pettitt’s change point detection tests, dates of major, behavioral shifts in the burned pixels’ average annual
ET/Ps are indicated with red vertical bars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2, 3, and 4). This contrasts with areas where inter and intra-fire response
variabilities are low, such as in southern California or the eastern US
(Fig. 8A and C, respectively). Work conducted by Lydersen et al. (2014)
identified several landscape attributes that correlated with burn severity
class at the Rim Fire (e.g., elevation, vegetation composition), many of
which had steep gradients in the burned area. This may explain the
patchy burn severity patterns (Lydersen et al., 2014) (see also Goulden
and Bales (2014)). Lydersen et al. (2014) also noted that highly unstable
weather conditions occurred shortly after ignition and likely contributed
to the fire’s dynamic behavior and resultant patchy burn severity. Thus,
because the area is ecologically, topographically, and climatically
diverse, and based on evidence from surrounding areas, it may have
been foreseeable that a fire on the western slope of the Sierra Nevada
would result in variable burn severity patterns and consequently, vari-
able ET/P response. The current work identifies statistical relationships
between burn severity and various landscape attributes (corroborated
by prior research (Lentile et al., 2007; Stevens-Rumann et al., 2016)),
suggesting that it may be possible to predict post-fire ET/P response
from a burn severity prediction.

Analysis of cluster assignment and incident type suggests that wild-
fire tends to reduce ET/P more than prescribed fire. Prescribed fires are
also more commonly associated with lower burn severity than are
wildfires. These results agree with previous findings that prescribed
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burns often correspond with lower burn severities, smaller fire sizes, and
are less likely to increase post-fire average annual discharge (Hallema
et al., 2018). Numerous studies summarized by Goeking and Tarboton
(2020) also show that non-stand-replacing drought, beetle kill, and fire
disturbance can increase ET,. This further corroborates our work and
may be relevant to land managers prescribing fire to reduce fuel load.
Where ET, increases within a year of prescribed burn treatment (i.e.,
cluster 4 pixels), vegetation may be regrowing rapidly and repeated
treatment may be required to maintain low fuel stock (Elliot et al.,
2010). In areas managed for water supply, the effect of prescribed burns
on water yield might also be considered (an actively debated, nuanced
topic that seems to be highly site-specific (Bart et al., 2021)). Relative to
pixels in clusters 1 and 2, a larger percentage of cluster 3 and 4 pixels are
characterized by post-fire year one ET/P ratios within one standard
deviation of their pre-fire average ET/P (Fig. 2D). In other words, pre-
scribed burns are more likely to cause ET/P shifts within the range of
background variability than wildfires.

There is a pattern in numerous burned areas where pixels with
smaller post-fire ET/P modifications are located at the burn perimeter
and greater ET/P reductions are located in the interior (e.g., Rim Fire
(Fig. 7); additional burned areas shown in Fig. 8F). This may occur
because fires naturally burn out or are successfully extinguished where
conditions promote milder fire behavior, such as where there is a shift in
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the density and/or condition of the fuel inventory (e.g., where natural or
artificial fire breaks are located) or where topography and/or weather
patterns promote lower intensity burning conditions (Calkin et al., 2014;
Hansen, 2018; USDA Forest Service, 2003; Whitman et al., 2018).
Furthermore, at the perimeter, fire may be less likely to fully consume
vegetation and plant recovery rates may be faster due to greater abun-
dance of onsite and proximity to off-site seed sources (Lentile et al.,
2007; Minnich, 1983). The pattern may be further evidence that where
land management promotes milder fire behavior and smaller patches of
high burn severity area, the risk of post-fire water budget modification
may be diminished.

4.2. Relationships between ET/P response and landscape attributes

We establish that the influence of certain landscape attributes on
post-fire ET/P response is not uniform across the CONUS, such as pre-
fire vegetation type (Table 3, SM Table B). As such, only results from
our sub-CONUS-scale models can be used to meaningfully inform the
potential ET, or ET/P response of a particular location or landscape
condition to fire and provides a basis for further work at finer spatial
scales. Some regions of the CONUS are so diverse that ET/P response did
not correlate with any variables, even when broken out by both cluster
assignment and EPA ecoregion. Elsewhere, breaking out EPA regions by
cluster increased explanatory power (all pixels in the Great Plains: R =
0.17, only cluster 1 pixels in the Great Plains: R% = 0.45).

The relatively small R? of even our burn scar scale MLR models
suggests that relationships between post-fire ET/P response and certain
landscape attributes may be non-linear, or that one or more potentially
relevant independent variables have been omitted. We do not include
myriad static and dynamic variables previously shown to influence post-
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Fig. 12. Probability Density Functions (PDFs) of
the percent difference between unburned and
burned pixel ET/P before and after fires for the
same six pixel pairs shown in Fig. 11 (one pair of
pixels per fire). X-axis provides the percent dif-
ference of each unburned-burned pixel pair’s
annual ET/P for the five years preceding the fire
(blue) and the two to five years following the fire
(red) (two post-fire years of data for Rim Fire,
three for North Schell Fire, four for PK Complex
fires, five for the remaining). Negative values
indicate that for a given year, the burned pixel’s
ET/P is greater than the unburned pixel’s ET/P
(rendering a negative percent change). For Rim
and Zaca fires, percent difference in post-fire year
one ET/Ps are 1,575% and 2,140%, respectively;
reduced to 500% for plotting purposes. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)

fire watershed hydrology. Pre-fire vegetation management tactics are
not represented in the NLCD land cover dataset (e.g., thinning, ladder
fuel removal) (Hankins, n.d.; Lake et al., 2017; Roche et al., 2018) nor
are explicit measures of vegetation density (Pyne, 2016, 2012, 2011; van
Wagtendonk et al., 2018). Time since last burned (Lydersen et al., 2014),
post-fire climatic conditions (save annual precipitation in evaporation
ratios) (Frazier et al., 2018; Roche et al., 2020, 2018), insect infestation
(Vanderhoof and Williams, 2015), and long-term vegetation conversion
(Keeley and Keeley, 1984; Landesmann et al., 2021; Rodman et al.,
2020; Rother and Veblen, 2016) are also not accounted for. These, and
the potential for ML approaches to tease out non-linear relationships,
could be considered in future work.

We do establish spatially and directionally consistent relationships
between ET/P response and burn severity classification. We also identify
patterns between burn severity, ET/P response, and pre-fire vegetation
type (Table 4) and show that the magnitude change in post-fire ET/P is
often greatest in evergreen forest. This is sensical as pre-fire ET, and ET/
P are also highest in the evergreen forest pixels in the majority of EPA
ecoregions, and because it is well-established that forests have higher
ET, rates than other vegetation types (Zhang et al., 2001). We also show
that the rate of ET/P recovery is inconsistent across vegetation types and
regions (Table 4). Per the YrYr recovery metric, ET/P recovery in
emergent wetland is twice as fast as recovery in evergreen forest and
three times as fast as in shrub/scrub and grassland in the North Amer-
ican Deserts EPA ecoregion. In the Great Plains, ET/P recovery is fastest
in shrub/scrub ecosystems. In the Southern Semi-arid Highlands, re-
covery is fastest in evergreen forest. This has important management
implications and may help land managers set appropriate expectations
about the potential duration of fire-induced hydromodification.

Past work shows that, in some locations, forested areas exposed to
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high burn severity are more likely to convert to a different type of cover
(i.e., grassland or shrub/scrub) than other vegetation types (Barton and
Poulos, 2018). This will likely affect energy budgets, and therefore post-
fire ET,, as evergreen forests have lower albedos than their deciduous,
shrubby, and herbaceous alternatives ((Jin et al., 2012; van Wagtendonk
et al., 2018)). Burn severity may also impact post-fire soil moisture and
therefore watershed recovery. In their modeling study, Atchley et al.
(2018) observed reduced ET, in both low and high burn severity areas,
which should have increased soil moisture. However, in the high burn
severity areas only, the increases elicited by the ET, response were
eclipsed by larger magnitude reductions in infiltration which increased
the runoff response. The high burn severity areas had comparatively
drier soils as a result. It has also been shown that post-fire ET, modifi-
cation is linked to the geology that controls subsurface water availability
(Maina and Siirila-Woodburn, 2020). The current study also identifies
loose relationships between geologically-driven AWC and ET/P
response at the EPA ecoregion scale and lithology at multiple scales
(Table 3, SM Tables B and C). Land management decisions may account
for these nuances by considering which can be managed (e.g., actively
treating fuel loads to reduce the risk of high burn severity) and which
cannot (e.g., lithology).

4.3. Limitations

Correlations between solar radiation, slope, and ET/P response are
low (Table 3) despite literature indicating that higher burn severities
tend to occur in drier and warmer landscape positions (often aspect
driven) (Alexander et al., 2006; Bigler et al., 2005; Pereira et al., 2016)
and our finding that burn severity and ET/P response are related.
Summaries of our data support the literature: in north-facing cluster 1
pixels (aspects between 350 and 10 degrees), the mean percent change
in post-fire year one ET/P is —77%, versus —97% in entirely south-facing
cluster 1 pixels (aspects between 170 and 190 degrees). The SSEBop
product’s moderate spatial resolution may mute the sub-grid heteroge-
neity in the native slope and aspect 30 m data and mask the significance
of these relationships with post-fire ET/P response (Dillon et al., 2011).
Similarly, quantifying solar irradiance at the annual timestep may mute
any explanatory power of the seasonal energy balance (Buffo et al.,
1972; Sellers, 1965). Aggregating to the annum also reduces insight into
the shape of the ET/P response.

While the moderate spatial and temporal resolution of the input data
limits our ability to detect smaller-scale effects of topography, climate,
and land surface cover, the computational requirements of a CONUS-
scale analysis using higher resolution data would be prohibitive. The
1 km SSEBop product is a well-established dataset with numerous use-
cases in the literature and well-documented validations (Chen et al.,
2016; Savoca et al., 2013; Senkondo et al., 2019; Singh and Senay, 2015;
Tobin and Bennett, 2019). The 30 m Landsat-based model is not yet
established as a primary data product and is still being developed and
revised (Senay, 2018; USGS EROS Customer Services, n.d.). The coarser-
resolution 1 km product is also less likely to contain error-prone outliers
because values are averaged over a larger spatial extent.

The current study uses burn severity mapping generated from dNBR.
We acknowledge that the ability of satellite-derived metrics to accu-
rately capture soil burn severity has been questioned (Keeley, 2009;
Kolden et al., 2015). Satellite-derived measurements aggregate fire ef-
fects at the spatial grain of the sensor which can introduce uncertainty
and smooth out underlying heterogeneity. And, because NBR is based on
spectral properties of ground or above-ground cover, it does not sample
the subsurface and therefore misses aspects of fire-induced soil modifi-
cation (Cansler and McKenzie, 2012; Key and Benson, 2006). While our
use of MTBS burn severity data may increase result uncertainty, dNBR
and Relative differenced NBR (RANBR) are widely used indices for
assessing burn severity (Cansler and McKenzie, 2012). Furthermore,
field-verified burn severity assessments that include subsurface obser-
vations are not currently available at the CONUS scale.
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4.4. Effect of fire versus background climate variability

Due to the overarching influence of climate on hydrologic processes,
establishing cause-and-effect relationships between suspected forcings
and shifts in hydrologic data can be challenging (Beyene et al., 2021;
Goulden and Bales, 2014; Hallema et al., 2018). It has been shown that
in some parts of the CONUS, post-fire streamflow may be primarily
controlled by interannual climate variability and only secondarily by the
landscape modifications conferred by fire (Hallema et al., 2018). Infer-
ring causality from statistical correlations alone can be misleading due
to feedbacks and data limitations (Miiller and Levy, 2019).

Analysis of burned and unburned pixel pairs indicates fire distur-
bance played a role in post-fire ET/P reductions (Fig. 11). However,
results from two of the six fires tested are insignificant. High variability
in the ET, data, the short temporal length of the datasets, and post-fire
vegetation recovery could be reducing the signal detection capabilities
of the statistical tests applied. Alternatively, overarching climate pat-
terns may be strong enough to overwhelm any fire-induced signals. At
the 2011 PK Complex fire in Texas, cumulative precipitation during the
water year the fire occurred was low relative to the long-term average.
Drought conditions wrought by a La Nina in the southern US in 2011
(Fernando et al., 2016) were a likely driver of the widespread fire ac-
tivity in Texas that year (DeBano et al., 1998; van Wagtendonk et al.,
2018). But evaporation ratios were reduced both inside and outside the
PK Complex’s burn perimeter during post-fire year one (Fig. 11).
Regional rainfall was above average in 2012 and may have contributed
to smaller ET/P ratios in burned and unburned areas alike. Although
reductions were larger in the burned PK Complex pixels, the strong,
super-imposed climate signal may have muted the significance of those
reductions.

5. Conclusions

This is the first study to evaluate post-fire ET, response at the CONUS
extent. Results can help inform land managers of potential post-fire
water budget shifts and provide the basis for future work at finer
spatial scales. ET/P is reduced in 82% of pixels during post-fire year one,
the largest occurring in the arid southwest. Moderate reductions also
occur throughout western states, and small to negligible decreases occur
throughout the CONUS, especially in the eastern US. Eighteen percent of
pixels observe negligible to moderate ET/P increases, including
numerous pixels in the eastern CONUS, around burn perimeters in the
mid to lower western states, within prescribed fires, and in wet regions
west of the 100th meridian (the longitudinal line at 100 degrees west of
the prime meridian). Five years after fires, evaporation ratios recover to
only approximately 50% of their pre-fire value in pixels with the largest
initial reductions (pixels assigned to cluster 1). A comparison of burned
and unburned pixel pairs indicates fire is the primary driver of the shifts,
but also that there is high background interannual variability in the ET,
and precipitation data.

Owing to its high topographic, climatologic, and ecologic variability,
the influence of some landscape attributes on the post-fire ET/P
response is not uniform across the entire CONUS (e.g., pre-fire vegeta-
tion type). If interested in the vulnerability of a particular location or
landscape condition to fire-induced ET/P modification, results from only
our finest-scale MLR models should be used. Further work may help to
refine relationships within more homogeneous sub-regions, and non-
linear relationships should be considered. Conversely, high burn
severity is consistently correlated with greater post-fire ET/P reduction.
Because previous studies establish statistical relationships between burn
severity and landscape attributes, we posit that an unburned area’s post-
fire ET/P response may be predictable if a burn severity estimate can be
generated first. We also demonstrate that, although the biggest percent
ET/P reductions often occur in shrub/scrub landscapes, the biggest
magnitude ET, changes occur in evergreen forests. ET/P recovery rates
vary by both location and pre-fire vegetation type, and we identify
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relationships between geologically-driven AWC, lithology, and post-fire
ET/P response. Land management decisions should account for these
nuances by considering which can be managed (e.g., forest composition
and structure) and which cannot (e.g., lithology). Because fire activity is
increasing in the western CONUS (Parks and Abatzoglou, 2020; Pyne,
2011; Robichaud et al., 2014; van Wagtendonk et al., 2018), our find-
ings highlight the importance of representing the inter-annual processes
that control post-fire ET/P change in process-based and statistical hy-
drological models. Accounting for fire-induced ET/P shifts may be less
critical in the eastern CONUS where post-fire ET/P shifts are typically
within background levels of the data’s natural, interannual variability.
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